481 |
Geometrically nonlinear analysis of plates using higher order finite elements鍾偉昌, Chung, Wai-cheong. January 1986 (has links)
published_or_final_version / Civil and Structural Engineering / Master / Master of Philosophy
|
482 |
Computer modelling of cloth objects趙宇飛, Zhao, Yufei. January 1997 (has links)
published_or_final_version / Mechanical Engineering / Doctoral / Doctor of Philosophy
|
483 |
A biomechanical model of the human tongue for understanding speech production and other lingual behaviorsBaker, Todd Adam January 2008 (has links)
A biomechanical model of the human tongue was constructed, based upon a detailed anatomical study of an actual cadaver. Data from the Visible Human Project were segmented to create a volumetric representation of the tongue and its constituent muscles. The volumetric representation was converted to a smooth NURBS-bounded solid model--for compatibility with meshing algorithms--by lofting between splines, the vertices of which were defined by the coordinates of a smoothed triangular mesh representation. Using a hyperelastic constitutive model that allowed for the addition of active stress, the model deforms in response to user-specified muscle activation patterns. A series of meshes was created to perform a mesh validation study; in the validation tests performed, a 245,223-element mesh was found to be sufficient to model tongue behavior.Systematic samples of the behavior of the model were collected. Principal component analyses were performed on the samples to discover low-dimensional representations of tongue postures. Statistical models (linear regression models and neural networks) were fit to predict tongue posture from muscle activation, and vice versa. In all tests, it was found that a relatively small sample of tongue postures can be used to successfully generalize to larger data sets.Finally, a variety of specific tests were performed, based on claims and predictions found in previous literature. Of these, the claims of the muscular hydrostat theory of tongue movement were best supported. Simulations were also run that simulated lingual hemiplegia. It was found that substantially different muscular activation patterns were required to achieve equivalent postures in a hemiplegic tongue, relative to a normal tongue.
|
484 |
EXAMINATION OF PRECAST CONCRETE DIAPHRAGM SEISMIC RESPONSE BY THREE-DIMENSIONAL NONLINEAR TRANSIENT DYNAMIC ANALYSESZhang, Dichuan January 2010 (has links)
The primary objective of the dissertation research is to establish the seismic demands of precast concrete floor diaphragms designed with an emerging design methodology. To accomplish this, three-dimensional (3D) finite element (FE) models of diaphragm-sensitive precast concrete structures have been developed by extending two-dimensional (2D) diaphragm model developed previously for nonlinear static "pushover" analyses. Using these models, diaphragm seismic demands under expected hazard are evaluated through the nonlinear transient dynamic analyses (NLTDA).The research work is composed of four major parts:(1) Developing 3D NLTDA analytical model for diaphragm-sensitive precast concrete structures: The 3D structure model is extended from a 2D FE diaphragm model developed by a previous researcher. This process involves properly handling comparability conditions in 3D, incorporating proper hysteresis behavior for the diaphragm reinforcement, and developing appropriate lateral force resisting system (LFRS) models. A sensitivity analysis is performed for 3D NLTDA modeling to assist in creating an appropriate model.(2) Application of the model in integrated analysis-driven physical testing: These experiments occurred at Lehigh University (LU) with project collaborators. The loading in these tests were controlled by NLTDA of the 3D analytical model. The tests were used to examine the seismic response of key joints (critical flexure and shear joints) in the diaphragm under realistic demands and to further calibrate the analytical model.(3) Analytical modeling in support of shake table testing: The shake table test was performed at University of California San Diego (UCSD). The test involved a half scale three-story diaphragm-sensitive precast concrete structure. NLTDA using the 3D analytical model is used to assist in design and performance prediction of the test specimen. The test results are being used to calibrate/verify the analytical model.(4) Calibrating design factors for the emerging diaphragm design methodology: In the last research step, the 3D analytical model is used to calibrate trial design factors for the emerging diaphragm design methodology. These factors are established based on a parametric study of NLDTA at different seismic hazard levels using simple structure configurations. These factors will be evaluated on models of realistic structures to determine design factors for the final design procedure.
|
485 |
FEDATA : an interactive finite element data generation programYu, Luen-hing. January 1975 (has links)
No description available.
|
486 |
A finite element investigation of reinforced concrete beams /Khouzam, Magda January 1976 (has links)
No description available.
|
487 |
Track and grouser performance evaluation using finite elementsSciadas, Nicolas. January 1982 (has links)
No description available.
|
488 |
Weak formulations in analytical dynamics, with applications to multi-rigid-body systems, using time finite elementsMello, Frank James 12 1900 (has links)
No description available.
|
489 |
Optimization of periodic devices using the finite element methodKhalaf, Loay D. 12 1900 (has links)
No description available.
|
490 |
Finite element analysis of stress rupture in pressure vessels exposed to accidental fire loadingManu, Christopher Corneliu 08 July 2008 (has links)
A numerical model that predicts high temperature pressure vessel rupture was developed. The finite element method of analysis was used to determine the effects that various parameters had on pressure vessel failure. The work was concerned with 500, 1000 and 33000 US gallon pressure vessels made of SA 455 steel. Experimental pressure vessel fire tests have shown that vessel rupture in a fully engulfing fire can occur in less than 30 minutes. This experimental work was used both to validate the numerical results as well as to provide important vessel temperature distribution information.
Due to the fact that SA 455 steel is not meant for high temperature applications, there was little published high temperature material data. Therefore, elevated temperature tensile tests and creep rupture tests were performed to measure needed material properties. Creep and creep damage constants were calculated from SA 455 steel’s creep rupture data.
The Kachanov One-State Variable technique and the MPC Omega method were the creep damage techniques chosen to predict SA 455 steel’s high temperature time-dependent behaviour. The specimens used in the mechanical testing were modeled to numerically predict the creep rupture behaviour measured in the lab. An extensive comparison between the experimental and numerical uniaxial creep rupture results revealed that both techniques could adequately predict failure times at all tested conditions; however, the MPC Omega method was generally more accurate at predicting creep failure strains. The comparison also showed that the MPC Omega method was more numerically stable than the One-State Variable technique when analyzing SA 455 steel’s creep rupture.
The creep models were modified to account for multiaxial states of stress and were used to analyze the high temperature failure of pressure vessels. The various parameters considered included pressure vessel dimensions, fire type (fully engulfing or local impingement), peak wall temperature and internal pressure. The objective of these analyses was to gain a better understanding of the structural failure of pressure vessels exposed to various accidental fire conditions.
The numerical results of rupture time and geometry of failure region were shown to agree with experimental fire tests. From the fully engulfing fire numerical analyses, it was shown that pressure vessels with a smaller length to diameter ratio and a larger thickness to diameter ratio were inherently safer. It was also shown that as the heated area was reduced, the failure time increased for the same internal pressure and peak wall temperature. Therefore, fully engulfing fires produced more structurally unstable conditions in pressure vessels then local fire impingements. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2008-07-04 10:55:32.008
|
Page generated in 0.056 seconds