1 |
An Experimental Investigation on the Dynamics of Lean Premixed Swirl FlamesDi Sabatino, Francesco 04 1900 (has links)
Gas turbine engines are an efficient and flexible way of power generation and aircraft propulsion. Even though different combustion systems can be implemented in these engines, more stringent regulations on pollutant emissions have been imposed throughout the years, especially in regard to nitrogen oxides (NOx). A very promising technology to reduce NOx emissions is lean premixed combustion (LPC), however, it is plagued by intense flame dynamics. Thermoacoustic instabilities, lean blow-off and lean instabilities are examples of dynamical phenomena that are detrimental to the gas turbines. In view of this, the present thesis presents the experimental investigation of the response of lean premixed swirl flames to acoustic perturbations at atmospheric and elevated pressures. The results of this investigation may be used to understand the thermoacoustic instabilities and further could be helpful in their prediction. Moreover, this work addresses the effects of non-thermal plasma discharges on the lean blow-off and stability limits of premixed swirl flames at elevated pressures. For the analysis of the flame response to acoustic fluctuations, the flame transfer functions, the flame dynamics, phase-locked velocity fields, and phase-locked measurements of flame curvature are collected through heat release and velocity fluctuations measurements, phase-locked images of the flame, particle image velocimetry, and planar laser-induced fluorescence, respectively. For the analysis of the effects of plasma discharges on the stability limits, electrical measurements and direct imaging of the flame are performed. The results include the development of an empirical relation based on the laminar burning velocity and on the circulation of the acoustically generated vortex to predict the response of the flame to acoustic fluctuations in different operating conditions. Moreover, the results show that the pressure has a strong impact on the response of lean premixed swirl flames to acoustic oscillations and on the flame-plasma interactions. Therefore, extrapolating results obtained at atmospheric conditions to elevated pressures may result in erroneous conclusions. Furthermore, it is shown that non-thermal plasma discharges can effectively extend the stability limits of lean premixed swirl flames at elevated pressures, underlining the potential of these discharges at conditions relevant for gas turbines.
|
2 |
Ignition Delay Times of Natural Gas/Hydrogen Blends at Elevated PressuresBrower, Marissa 2012 August 1900 (has links)
Applications of natural gases that contain high levels of hydrogen have become a primary interest in the gas turbine market. For reheat gas turbines, understanding of the ignition delay times of high-hydrogen natural gases is important for two reasons. First, if the ignition delay time is too short, autoignition can occur in the mixer before the primary combustor. Second, the flame in the secondary burner is stabilized by the ignition delay time of the fuel. While the ignition delay times of hydrogen and of the individual hydrocarbons in natural gases can be considered well known, there have been few previous experimental studies into the effects of different levels of hydrogen on the ignition delay times of natural gases at gas turbine conditions.
In order to examine the effects of hydrogen content at gas turbine conditions, shock-tube experiments were performed on nine combinations of an L9 matrix. The L9 matrix was developed by varying four factors: natural gas higher-order hydrocarbon content of 0, 18.75, or 37.5%; hydrogen content of the total fuel mixture of 30, 60, or 80%; equivalence ratios of 0.3, 0.5, or 1; and pressures of 1, 10, or 30 atm. Temperatures ranged from 1092 K to 1722 K, and all mixtures were diluted in 90% Ar. Correlations for each combination were developed from the ignition delay times and, using these correlations, a factor sensitivity analysis was performed. It was found that hydrogen played the most significant role in ignition delay time. Pressure was almost as important as hydrogen content, especially as temperature increased. Equivalence ratio was slightly more important than hydrocarbon content of the natural gas, but both were less important than pressure or hydrogen content.
Further analysis was performed using ignition delay time calculations for the full matrix of combinations (27 combinations for each natural gas) using a detailed chemical kinetics mechanism. Using these calculations, separate L9 matrices were developed for each natural gas. Correlations from the full matrix and the L9 matrix for each natural gas were found to be almost identical in each case, verifying that a thoughtfully prepared L9 matrix can indeed capture the major effects of an extended matrix.
|
Page generated in 0.0746 seconds