Spelling suggestions: "subject:"elliptic section""
1 |
Axial loading of elliptical-section bonded rubber blocksTupholme, Geoffrey E., Horton, J.M. 13 July 2009 (has links)
No / Closed-form expressions for the small axial deflection and stress distribution of axially loaded rubber blocks of elliptical cross-section, whose ends are bonded to rigid plates, are derived using a superposition approach. The governing equations and conditions are satisfied exactly, based upon the classical theory of elasticity. Easily calculable expressions are derived for the corresponding apparent Young¿s modulus and the modified apparent Young¿s modulus in forms analogous to those previously given for blocks of circular cross-section.
|
2 |
An experimental study on elliptical concrete filled columns under axial compression.Jamaluddin, N., Lam, Dennis, Dai, Xianghe, Ye, J. January 2013 (has links)
This paper presents the experimental results and observation of elliptical concrete filled tube (CFT) columns subjected to axial compressive load. A total of twenty-six elliptical CFT specimens including both stub and slender composite columns are tested to failure to investigate the axial compressive behaviour. Various column lengths, sectional sizes and infill concrete strength are used to quantify the influence of member geometry and constituent material properties on the structural behaviour of elliptical CFT columns. As there is no design guidance currently available in any Code of Practice, this study provides a review of the current design rules for concrete filled circular hollow sections in Eurocode 4 (EC4). New equations based on the Eurocode 4 provisions for concrete filled circular hollow sections were proposed and used to predict the capacities of elliptical CFT columns.
|
3 |
Tests on elliptical concrete filled steel tubular (CFST) beams and columnsRen, Q-X., Han, L-H., Lam, Dennis, Li, W. 04 May 2014 (has links)
No / This paper presents a series of test results of elliptical concrete filled steel tubular (CFST) beams and columns to explore their performance under bending and compression. A total of twenty-six specimens were tested, including eight beams under pure bending and eighteen columns under the combination of bending and compression. The main parameters were the shear span to depth ratio for beams, the slenderness ratio and the load eccentricity for columns. The test results showed that the CFST beams and columns with elliptical sections behaved in ductile manners and were similar to the CFST members with circular sections. Finally, simplified models for predicting the bending strength, the initial and serviceability-level section bending stiffness of the elliptical CFST beams, as well as the axial and eccentric compressive strength of the composite columns were discussed.
|
Page generated in 0.1064 seconds