• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Isolation, characterization and ectopic expression of the Douglas-fir embryo-specific gene, LEAFY COTYLEDON1

Vetrici, Mariana A 07 January 2009 (has links)
Douglas-fir (Pseudotsuga menziesii) is an economically important softwood that is clonally propagated for reforestation purposes by somatic embryogenesis. The molecular basis of embryogenesis in conifers is largely unknown and this prevents progress in somatic embryogenesis protocols. In angiosperms, the LEAFY COTYLEDON1 (LEC1) gene, encoding the HAP3 subunit of the eukaryotic CCAAT box-binding factor, is important in embryo formation, and necessary for somatic embryogenesis. A candidate gene strategy was employed to isolate the Douglas-fir LEC1 homologue, PmLEC1, via the polymerase chain reaction (PCR) with degenerate primers based on the Arabidopsis conserved domain, and the full-length cDNA sequence was obtained by rapid amplification of cDNA ends-PCR (RACE-PCR). The putative protein sequence shared high sequence identity with Arabidopsis LEC1. Northern analysis and quantitative real-time PCR indicate that this is an embryo-specific gene, expressed with the highest abundance during early embryogenesis. Antibodies were raised against a synthetic 18-amino acid PmLEC1 peptide, and in contrast to mRNA expression, Western blotting shows that PmLEC1 protein expression persists until the seedling stage. To gain insight into modulation of PmLEC1 expression and its inducibility in mature tissues, stress and hormone treatments were performed on mature seed and the promoter sequence was isolated by genome walking. Sorbitol, mannitol and 2,4-epibrassinolide were found to significantly up-regulate PmLEC1 expression. The PmLEC1 promoter contains a 5’ UTR intron with numerous enhancer elements, and factors that bind to these elements mediate responses to auxin, UV light and developmental cues, osmotic stress, biotic stress, and tissue culture. Some of the regulatory elements are binding sites for seed-specific transcription factors that are well known from angiosperms, providing new evidence that AGL15, ABI3 and VP1 proteins have a direct role on LEC1 expression. In investigating the embryogenic capacity of PmLEC1, ectopic expression of PmLEC1 in the embryo lethal Arabidopsis lec1-1 null mutant complemented the mutation and permitted the production of viable, desiccation tolerant seeds. In addition, transgenic seedlings produced embryo-like structures from vegetative organs and expressed seed-specific genes. In wild type plants, ectopic expression of PmLEC1 resulted in a bushy phenotype but expression of seed-specific genes was not observed. Taken together, these results show that PmLEC1 is an embryo-specific gene with an essential role throughout embryogenesis, and PmLEC1 expression may be induced in mature seeds by stress and hormone treatments. Because mature seeds show only trace amounts of PmLEC1 transcripts and Douglas-fir somatic embryogenesis can only be induced from immature embryos, this information provides useful insight into initiation of embryogenesis from vegetative tissues. The identification of binding sites for transcription factors known from angiosperms in the promoter region of PmLEC1 has revealed the identity of several genes which are expected to play pivotal roles in conifer embryogenesis.

Page generated in 0.0862 seconds