• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application of emulsified substrate to remediate TCE-contaminated groundwater

Chen, Yi-ming 16 August 2010 (has links)
Trichloroethene (TCE) and tetrachloroethene (PCE) are among the most commonly detected groundwater contaminants, and are often difficult to remediate due to their presence as dense non-aqueous phase liquids (DNAPLs) in the subsurface. The objective of this study was to assess the potential of using a passive in situ carbon/hydrogen releasing barrier system to bioremediate TCE-contaminated groundwater. The slow carbon/hydrogen releasing material would cause the aerobic cometabolism and reductive dechlorination of TCE in aquifer. The carbon/hydrogen releasing materials would release carbon when contacts with groundwater and release hydrogen after the anaerobic biodegradation of released carbon, thus cause the reductive dechlorination of TCE. Results from the microcosm study indicate that the addition of emulsified substrate, cane molasses, Simple GreenTM (a biodegradable surfactant), or lecithin would enhance the biodegradation rate of TCE under anaerobic conditions. However, addition of multivitamin would increase the bacterial population in the media but would not be able to enhance the TCE degradation rate. Results show that a significant pH drop was observed due to the production of organic acids after the aerobic biodegradation process of cane molasses and lecithin. This also caused the inhibition of microbial growth in microcosms. Results reveal that higher TCE removal efficiency was observed in microcosms with Simple GreenTM addition followed by the addition of cane molasses, lecithin, multivitamin, emulsified substrate, groundwater (without substrate addition). Results from the microcosm study indicate that the addition of emulsified substrate would enhance the biodegradation rate of TCE under anaerobic conditions. However, appearance of high nitrate concentration would inhibit the TCE degradation process due to the occurrence of denitrification. Compared with nitrate, high sulfate concentration would not have significant impact on the reductive dechlorination of TCE. Results reveal that higher TCE removal efficiency was observed in microcosms with emulsified substrate addition followed by the addition of high sulfate concentration, high nitriate concentration, groundwater (without substrate addition). Results from the gene analysis show that phenol monooxygenase, toluene monooxygenase, and toluene dioxygenase were observed in the microcosms with lecithin, cane molasses, Simple GreenTM, and emulsified substrate. This indicates that the addition of substrates would induce the potential of TCE-degrading enzyme. Addition of emulsified substrate and emulsified substrate in nitrate or sulfate-rich media would stimulate Dehalococcoides sp. to induce tceA, bvcA, and vcrA, enzymes for TCE reductive dechlorination.

Page generated in 0.1457 seconds