• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamic Modelling of the Emulsion Copolymerization of Styrene/Butadiene / Dynamic Modelling of the Emulsion Copolymerization of SBR

Broadhead, Taras Oscar January 1984 (has links)
<p> A computer model is developed to simulate the emulsion copolymerization of styrene/butadiene in perfectly stirred batch, semi-batch or continuous flow reactors. The model considers free radical initiation by a redox mechanism, micellar particle nucleation, radical concentration as -a function of particle size, radical entry rate and termination rate and diffusion controlled termination and propagation reactions. It predicts conversion, copolymer composition, particle number, number and mass average molecular masses and tri- and tetra-functional branch frequencies. A simple method of estimating the particle size distribution is included in the model. Heat balances over the reactor and cooling jacket are considered and proportional-integra control of the reactor temperature is simulated.</p> <p> The model is used to simulate SBR copolymerization and styrene homopolymerization experimental data from the literature. These simulations tested only certain parts of the model and it is concluded that a more complete verification of the model can only be achieved by running a series of designed experiments. Qualitatively, the molecular mass, particle size distribution and reactor temperature predictions appear to be reasonable. The lack of appropriate temperature dependent rate constants currently limits the molecular mass predictions to isothermal conditions.</p> <p> A comparison of semi-batch operating policies designed to control copolymer composition is presented to illustrate the potential application of the model.</p> / Thesis / Master of Engineering (ME)
2

Technologie emulzní polymerace / Technology of emulsion polymerization

Chadima, David January 2016 (has links)
The diploma thesis deals with the influence of technological parameters on the emulsion copolymerization of methyl methacrylate with n butyl acrylate. The theoretical part contains knowledge in the field of influences of proces tempereture, concentration of initiator, concentration of emulsifier, stirring rate and dose rate on emulsion polymerization. In the experimental part was observed effect of the concentration of the ionic emulsifier, nonionic emulsifier, furthemore was observed effect of stirring speed and the concentration of initiator K2S2O8 on conversion of copolymerization. During all copolymerizations, conversions was determinated via solids content evaluation. By dynamic light scattering was determinated and presented polymer particle size of the prepared emulsions. Stability of emuldions was observed via effect of different ionic strenght and yield of freeze thaw cycles coalescence. Based on experimental results were proposed conditions of polyacrylic lattex preparation.
3

Dynamic modelling and optimization of polymerization processes in batch and semi-batch reactors : dynamic modelling and optimization of bulk polymerization of styrene, solution polymerization of MMA and emulsion copolymerization of styrene and MMA in batch and semi-batch reactors using control vector parameterization techniques

Ibrahim, W. H. B. W. January 2011 (has links)
Dynamic modelling and optimization of three different processes namely (a) bulk polymerization of styrene, (b) solution polymerization of methyl methacrylate (MMA) and (c) emulsion copolymerization of Styrene and MMA in batch and semi-batch reactors are the focus of this work. In this work, models are presented as sets of differential-algebraic equations describing the process. Different optimization problems such as (a) maximum conversion (Xn), (b) maximum number average molecular weight (Mn) and (c) minimum time to achieve the desired polymer molecular properties (defined as pre-specified values of monomer conversion and number average molecular weight) are formulated. Reactor temperature, jacket temperature, initial initiator concentration, monomer feed rate, initiator feed rate and surfactant feed rate are used as optimization variables in the optimization formulations. The dynamic optimization problems were converted into nonlinear programming problem using the CVP techniques which were solved using efficient SQP (Successive Quadratic Programming) method available within the gPROMS (general PROcess Modelling System) software. The process model used for bulk polystyrene polymerization in batch reactors, using 2, 2 azobisisobutyronitrile catalyst (AIBN) as initiator was improved by including the gel and glass effects. The results obtained from this work when compared with the previous study by other researcher which disregarded the gel and glass effect in their study which show that the batch time operation are significantly reduced while the amount of the initial initiator concentration required increases. Also, the termination rate constant decreases as the concentration of the mixture increases, resulting rapid monomer conversion. The process model used for solution polymerization of methyl methacrylate (MMA) in batch reactors, using AIBN as the initiator and Toluene as the solvent was improved by including the free volume theory to calculate the initiator efficiency, f. The effects of different f was examined and compared with previous work which used a constant value of f 0.53. The results of these studies show that initiator efficiency, f is not constant but decreases with the increase of monomer conversion along the process. The determination of optimal control trajectories for emulsion copolymerization of Styrene and MMA with the objective of maximizing the number average molecular weight (Mn) and overall conversion (Xn) were carried out in batch and semi-batch reactors. The initiator used in this work is Persulfate K2S2O8 and the surfactant is Sodium Dodecyl Sulfate (SDS). Reduction of the pre-batch time increases the Mn but decreases the conversion (Xn). The sooner the addition of monomer into the reactor, the earlier the growth of the polymer chain leading to higher Mn. Besides that, Mn also can be increased by decreasing the initial initiator concentration (Ci0). Less oligomeric radicals will be produced with low Ci0, leading to reduced polymerization loci thus lowering the overall conversion. On the other hand, increases of reaction temperature (Tr) will decrease the Mn since transfer coefficient is increased at higher Tr leading to increase of the monomeric radicals resulting in an increase in termination reaction.
4

Modelagem matemática de copolimerização em emulsão de acrilato de butila e estireno para determinação dos valores médios de peso molecular e distribuição de tamanho de partículas. / Mathematical modeling of emulsion copolymerization of N-buty acrylate and styrene accounting for average molecular weights and particle size distribution.

Pereira, Rodrigo Vallejo 09 October 2015 (has links)
Um modelo matemático da reação de copolimerização em emulsão de acrilato de butila e estireno em reator batelada e semi-batelada isotérmico foi desenvolvido e apresentou bons resultados quando comparado a experimentos disponíveis em literatura científica. O modelo contemplou a solução do balanço populacional, tanto para a distribuição de tamanho de partículas quando para a distribuição média de radicais por partícula. Contemplou-se também a solução do balanço de momentos, para obtenção da massa molar média numérica e mássica. O problema descrito foi resolvido através da solução numérica de um conjunto de equações algébricodiferenciais e o balanço populacional foi resolvido pelo método dos pivots fixos. Foi possível validar com boa aderência a conversão dos monômeros, o diâmetro médio de partículas, número de partículas por litro de emulsão, número médio de radicais por partícula, a distribuição de tamanho de partículas e a massa molar média numérica e mássica ao longo do tempo para um conjunto de experimentos. / A mathematical model of emulsion copolymerization reaction of styrene and butyl acrylate for batch and semi-batch isothermal reactor was developed and presented good results when compared to experiments available in the scientific literature. The model included the solution of the population balance for both particle size distribution and average number of radicals per particle. The balances of moments of the molecular weight distribution are solved to obtain the weight- and numberaveraged molecular weight of the polymer. The problem described was solved by numerical solution of a set of algebraic-differential equations and the population balance was solved by the method of fixed pivots. The model prediction were validated with a set of experiments with respect to the changes of monomer conversion, average particle diameter, number of particles per liter of emulsion, average number of radicals per particle, particle size distribution, number- and weight-average molecular weight during process time.
5

Modelagem matemática de copolimerização em emulsão de acrilato de butila e estireno para determinação dos valores médios de peso molecular e distribuição de tamanho de partículas. / Mathematical modeling of emulsion copolymerization of N-buty acrylate and styrene accounting for average molecular weights and particle size distribution.

Rodrigo Vallejo Pereira 09 October 2015 (has links)
Um modelo matemático da reação de copolimerização em emulsão de acrilato de butila e estireno em reator batelada e semi-batelada isotérmico foi desenvolvido e apresentou bons resultados quando comparado a experimentos disponíveis em literatura científica. O modelo contemplou a solução do balanço populacional, tanto para a distribuição de tamanho de partículas quando para a distribuição média de radicais por partícula. Contemplou-se também a solução do balanço de momentos, para obtenção da massa molar média numérica e mássica. O problema descrito foi resolvido através da solução numérica de um conjunto de equações algébricodiferenciais e o balanço populacional foi resolvido pelo método dos pivots fixos. Foi possível validar com boa aderência a conversão dos monômeros, o diâmetro médio de partículas, número de partículas por litro de emulsão, número médio de radicais por partícula, a distribuição de tamanho de partículas e a massa molar média numérica e mássica ao longo do tempo para um conjunto de experimentos. / A mathematical model of emulsion copolymerization reaction of styrene and butyl acrylate for batch and semi-batch isothermal reactor was developed and presented good results when compared to experiments available in the scientific literature. The model included the solution of the population balance for both particle size distribution and average number of radicals per particle. The balances of moments of the molecular weight distribution are solved to obtain the weight- and numberaveraged molecular weight of the polymer. The problem described was solved by numerical solution of a set of algebraic-differential equations and the population balance was solved by the method of fixed pivots. The model prediction were validated with a set of experiments with respect to the changes of monomer conversion, average particle diameter, number of particles per liter of emulsion, average number of radicals per particle, particle size distribution, number- and weight-average molecular weight during process time.
6

Dynamic Modelling and Optimization of Polymerization Processes in Batch and Semi-batch Reactors. Dynamic Modelling and Optimization of Bulk Polymerization of Styrene, Solution Polymerization of MMA and Emulsion Copolymerization of Styrene and MMA in Batch and Semi-batch Reactors using Control Vector Parameterization Techniques.

Ibrahim, W.H.B.W. January 2011 (has links)
Dynamic modelling and optimization of three different processes namely (a) bulk polymerization of styrene, (b) solution polymerization of methyl methacrylate (MMA) and (c) emulsion copolymerization of Styrene and MMA in batch and semi-batch reactors are the focus of this work. In this work, models are presented as sets of differential-algebraic equations describing the process. Different optimization problems such as (a) maximum conversion (Xn), (b) maximum number average molecular weight (Mn) and (c) minimum time to achieve the desired polymer molecular properties (defined as pre-specified values of monomer conversion and number average molecular weight) are formulated. Reactor temperature, jacket temperature, initial initiator concentration, monomer feed rate, initiator feed rate and surfactant feed rate are used as optimization variables in the optimization formulations. The dynamic optimization problems were converted into nonlinear programming problem using the CVP techniques which were solved using efficient SQP (Successive Quadratic Programming) method available within the gPROMS (general PROcess Modelling System) software. The process model used for bulk polystyrene polymerization in batch reactors, using 2, 2 azobisisobutyronitrile catalyst (AIBN) as initiator was improved by including the gel and glass effects. The results obtained from this work when compared with the previous study by other researcher which disregarded the gel and glass effect in their study which show that the batch time operation are significantly reduced while the amount of the initial initiator concentration required increases. Also, the termination rate constant decreases as the concentration of the mixture increases, resulting rapid monomer conversion. The process model used for solution polymerization of methyl methacrylate (MMA) in batch reactors, using AIBN as the initiator and Toluene as the solvent was improved by including the free volume theory to calculate the initiator efficiency, f. The effects of different f was examined and compared with previous work which used a constant value of f 0.53. The results of these studies show that initiator efficiency, f is not constant but decreases with the increase of monomer conversion along the process. The determination of optimal control trajectories for emulsion copolymerization of Styrene and MMA with the objective of maximizing the number average molecular weight (Mn) and overall conversion (Xn) were carried out in batch and semi-batch reactors. The initiator used in this work is Persulfate K2S2O8 and the surfactant is Sodium Dodecyl Sulfate (SDS). Reduction of the pre-batch time increases the Mn but decreases the conversion (Xn). The sooner the addition of monomer into the reactor, the earlier the growth of the polymer chain leading to higher Mn. Besides that, Mn also can be increased by decreasing the initial initiator concentration (Ci0). Less oligomeric radicals will be produced with low Ci0, leading to reduced polymerization loci thus lowering the overall conversion. On the other hand, increases of reaction temperature (Tr) will decrease the Mn since transfer coefficient is increased at higher Tr leading to increase of the monomeric radicals resulting in an increase in termination reaction.

Page generated in 0.0955 seconds