• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterizing the interactions of ATP and DNA with the MutL Mismatch Repair protein

Ortiz Castro, Mary January 2016 (has links)
The fidelity of DNA replication prevents mutations that may lead to cancer predisposition or neurodegenerative diseases. One mechanism that enhances DNA replication fidelity is DNA mismatch repair, which corrects mismatches and small insertion/deletion loops that have escaped polymerase proofreading. In all eukaryotes and most prokaryotes, MutL (a key mismatch repair protein) has an intrinsic endonuclease activity that nicks the newly synthesized strand and recruits downstream factors to remove and correct errors. It has been proposed that ATP binding promotes a series of conformational changes that induce structural order within MutL and stimulates its endonuclease activity. The C-terminal domain of MutL, which harbors the endonuclease site, does not bind to DNA. This has prevented the molecular characterization of its endonuclease activity. In this thesis, we first show that MutL in B. subtilis exhibits asymmetric conformations similar to yeast and human MutL homologs. We also devise a novel approach to bypass the binding defect of the C-terminal domain by using fusion proteins. We find that these fusions bind to DNA specifically and, in the presence of the processivity clamp, can nick DNA. One of these fusion proteins in particular stimulates the nicking activity much more efficiently than the C-terminal domain alone. This work lays the foundation for the mechanistic characterization of the MutL endonuclease and provides a method to stabilize transient protein-DNA interactions. / Thesis / Master of Science (MSc)
2

Assessing the functional asymmetry of the Bacillus subtilis MutL homodimer

Liu, Linda January 2017 (has links)
DNA mismatch repair corrects base-base mismatches and small insertion/deletion loops generated during normal DNA replication. If left unrepaired, these errors become permanent mutations and can lead to increased susceptibility to cancer. In most prokaryotes and all eukaryotes, the mismatch repair protein MutL is a sequence-unspecific endonuclease that plays an essential role in the strand discrimination step of this pathway. Prokaryotic MutL forms homodimers with two endonuclease sites, whereas eukaryotic MutL homologs form heterodimers with a single active site. To elucidate the mechanistic differences between prokaryotic and eukaryotic MutL, we tested whether both endonuclease sites are necessary for prokaryotic MutL nicking activity. MutL interaction with the processivity clamp is required to stimulate endonuclease activity. Therefore, we also tested whether both subunits of the MutL dimer needed to interact with the processivity clamp. To this end, we engineered a system to independently manipulate each protomer of the homodimer. We demonstrated that prokaryotic MutL is regulated by the processivity clamp to act in a similar manner to eukaryotic MutL with only one functional site contributing to the endonuclease activity. We also devised a strategy to stabilize the transient interactions between MutL, the β-clamp, and DNA through disulfide bridge crosslinking and heterobifunctional crosslinking. Stabilizing transient protein-protein and protein-DNA interactions will help optimize future structural studies in obtaining the ternary complex for mechanistic insights to the MutL endonuclease activity and regulation imposed by the β-clamp. / Thesis / Master of Science (MSc)
3

Vývoj testovací metody pro identifikaci inhibitorů chřipkové polymerasy / Development of high-throughput screening assay for the identification of inhibitors targeting influenza A polymerase

Karlukova, Elena January 2018 (has links)
Influenza virus A circulates in birds and mammals and causes severe infectious disease that affects from 3 to 5 million people each year. There are two classes of anti-influenza drugs currently available: neuraminidase and M2 channel inhibitors. However, increasing resistance against these two types of inhibitors along with the potential emergence of new viral strains and unpredictability of pandemic outbreaks emphasize an unmet need for new types of inhibitors. RNA-dependent influenza polymerase serves as a novel promising target for the development of anti-influenza medications. The aim of this master thesis is to develop in vitro high-throughput assays for screening of compounds targeting influenza RNA polymerase, particularly, its cap binding and endonuclease domains. For cap-binding domain the screening is based on DIANA (DNA-linked Inhibitor ANtibody Assay) method that was recently developed in our laboratory; for endonuclease domain, the method is based on AlphaScreen technology. For the purposes of the methods development, recombinant cap binding domain of PB2 subunit and N-terminal endonuclease domain of PA subunit of influenza polymerase were expressed with appropriate fusion tags and purified using affinity and gel permeation chromatography. The probes for the screening assays were...
4

Interdoménové a intradoménové interakce u motorové podjednotky EcoR124I: Výpočetní studie

SINHA, Dhiraj January 2016 (has links)
EcoR124I is a Type I restrictionmodification (RM) enzyme and as such forms multifunctional pentameric complexes with DNA cleavage and ATP-dependent DNA translocation activities located on the motor subunit HsdR. When non-methylated invading DNA is recognized by the complex, two HsdR endonuclease/motor subunits start to translocate dsDNA without strand separation activity up to thousands base pairs towards the stationary enzyme while consuming ~1 molecule of ATP per base pair advanced. Whenever translocation is stalled the HsdR subunits cleave the dsDNA nonspecifically far from recognition site. The X-ray crystal structure of HsdR of EcoR124I bound to ATP gave a first insight of structural/functional correlation in the HsdR subunit. The four domains within the subunit were found to be in a square planer arrangement. Computational modeling including molecular dynamics in combination with crystallography, point mutations, in vivo and in vitro assays reveals how interactions between these four domains contribute to ATP-dependent DNA translocation, DNA cleavage or inter-domain communication between the translocase and endonuclease activities.

Page generated in 0.1023 seconds