• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Využití částic myšího polomaviru pro dopravu látek do buněk / Utilization of mouse polyomavirus derived virus-like particles for cargo delivery into cells

Polidarová, Markéta January 2016 (has links)
and key words Mouse polyomavirus-derived virus-like particles composed from major capsid protein VP1 (MPyV VP1-VLPs) are interesting structures for use as a delivery system of various cargos into cells. VP1 protein self-assembles into icosahedral particles of 45 nm in diameter that are hollow highly regular nanoparticles. In this work, model small molecule cargo, Cyclodextrin-Based Bimodal Fluorescence/MRI Contrast Agent, was encapsidated into MPyV VP1-VLPs. The cargo was stably associated with VLPs and was delivered into mammalian cells using these VLPs. To prevent VLPs entrapment in endolysosomal compartments and increase the potential of VLPs applications, MPyV VP1 protein was modified by insertion of histidine-tag (6 histidine long sequence surrounded by glycine and serine) sequences into VP1 surface loop DE, because histidine modification of synthetic systems had enhancing effect on endosome escape and cargo delivery. With the use of in Bac-to-Bac® baculovirus expression system His-VP1 protein was expressed in insect cells and a variety of VP1-assemblies was obtained: long tubules and small 20nm VLPs formed from VP1 with 4 histidine-tags in DE loop, and novel VP1 nanostructure, which we named nano-jumpers, formed from VP1 with 2 histidine-tags. Nonetheless the endosome escape properties of...
2

Macropinocytosis-Inducing Peptides: Identification, Utility, and Mechanism-of-Action / 新規マクロピノサイトーシス誘導ペプチドの同定、細胞内送達への有用性と作用様式

Arafiles, Jan Vincent Valenzuela 23 September 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(薬科学) / 甲第22753号 / 薬科博第127号 / 新制||薬科||14(附属図書館) / 京都大学大学院薬学研究科薬科学専攻 / (主査)教授 二木 史朗, 教授 中山 和久, 教授 髙倉 喜信 / 学位規則第4条第1項該当 / Doctor of Pharmaceutical Sciences / Kyoto University / DFAM
3

Studium účinku modifikace virových částic polyhistidinem na jejich intracelulární lokalizaci a dopravu genů do jádra / Effect of polyhistidine modification of viral particles on their intracellular localization and gene delivery to the nucleus

Číhařová, Barbora January 2021 (has links)
Viral vectors derived from mouse polyomavirus are a convenient tool for studying the targeted delivery of therapeutical agents into the cells and cellular organelles. Vectors derived from mouse polyomavirus face difficulties similar to other nanoparticles, as they often end up trapped inside an endosome where they are subsequently degraded. This diploma explored the potential of vector modifications, which have the potential to make the transport to the nucleus or cytosol more effective. This work had particularly focused on increasing the transduction efficiency by modifying particle's internally localized VP3 capsid protein with covalently bound membrane-penetrating peptides. Primary covalent genetic modification to the VP3 protein was the polyhistidine peptide KH27K. Its potential of improving the transduction effectivity was compared with two other peptide modifications - LAH4 and R8. The results of the transduction test showed that covalently bound R8 peptide had many-fold improved the transport to the nucleus when compared to the unmodified particles. The modification with LAH4 peptide had been regarded more effective only when was associated with the particles non-covalently. In such scenario the transduction efficiency rose 40-times when compared with unmodified particles. Polyhistidine...

Page generated in 0.0419 seconds