• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 77
  • 46
  • Tagged with
  • 123
  • 123
  • 123
  • 123
  • 90
  • 89
  • 73
  • 34
  • 16
  • 11
  • 11
  • 5
  • 5
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Large-scale Wind Power integration in a Hydro-Thermal Power Market

Trøtscher, Thomas January 2007 (has links)
<p>This master thesis describes a quadratic programming model used to calculate the spot prices in an efficient multi-area power market. The model has been adapted to Northern Europe, with focus on Denmark West and the integration of large quantities of wind power. In the model, demand and supply of electricity are equated, at an hourly time resolution, to find the spot price in each area. Historical load values are used to represent demand which is assumed to be completely inelastic. Supply is modeled according to the type of generation: Thermal generators are represented by piecewise linear, upward sloping, marginal cost curves. Historical wind generation data is used to model the fluctuating wind power output, and wind power is considered to have zero marginal cost. Hydro power is modeled by one aggregate reservoir for Norway and one for Sweden; the marginal cost of hydro power is set as a function of the difference between the reservoir level and the historical median reservoir level. Additionally, decentral combined heat and power plants in Denmark are considered to operate irrespective of the market. Six separate price areas constitute the model: Denmark West, Denmark East, Norway, Sweden/Finland, Germany, and Central Europe. The areas are modeled as having no internal bottlenecks and are connected by tie-lines constrained by active power limits. This report quantifies the impact the installed wind power capacity has on the power price in Denmark West by scaling up the wind power output in the model. Because wind power has a marginal cost close to zero, it will force prices down. The effect will be most prominent during high wind speed hours in a power system with substantial amounts of wind power. Results show that the impact is modest; average power prices fall by only 10% if the installed wind power capacity is doubled, and thermal generation will set the power price in all hours until wind energy exceeds 50% of domestic demand in Denmark. Since prices fall the most during hours with high wind power output, income to wind turbine owners will decline quickly as the installed capacity becomes large. The effect is most pronounced at wind energy shares above 40%, thereafter the income -- per MWh sold -- falls rapidly. In absence of government subventions, this effect will limit the economically viable level of installed wind power capacity. Expansion of the cross-border transmission capacity and higher thermal generation costs can both help offset the income reduction to wind turbine owners from higher wind power penetration. Alone, a 30% increase in thermal generation costs can allow 50% of wind energy and still retain todays income to wind turbine owners. Use of the Norwegian hydro reservoirs to balance out fluctuations in wind power output is found to stabilize and reduce the price. This benefits both consumers and wind turbine owners in Denmark. Expansion of transmission capacity to Norway will further stabilize the price; a new 1000MW cable lets the Danish market easily accomodate 50% wind energy. With lower and more volatile prices as a result of high wind power penetration, a load can profit by being flexible. Water electrolysis is one such load; it uses electricity to produce hydrogen, and production can quickly be ramped up and down in accordance with the power price. Presently, steam methane reforming is the least expensive method of producing hydrogen, but with higher wind power penetration, electrolysis might become competitive. Using a previously developed model to assess the cost of electrolysis, in combination with the power market model developed here, this report finds that wind energy must exceed 85% of domestic demand in Denmark, combined with higher natural gas prices, for electrolysis to break even with steam methane reforming.</p>
42

Balancing Costs for Wind Power

Larssen, Marit January 2007 (has links)
<p>Nordel is the organisation for the Nordel synchronous system, held by the Nordic Transmission System Operators. In their work to harmonise the Nordic electricity markets they have agreed upon harmonising the Nordic balance management. This will imply three large changes, firstly the settlement of the production balance will be done by a 2-price settlement, (instead of the 1-price settlement in Norway), and secondly there will be a new intraday market for settling the balances after 12- 36 hours and before operating time. Finally the Balance Responsible Parties will have to take their share of the costs for operating the reserves. Paying a penalty through paying more in the regulating market than in the spot market is meant as an incentive for the market to maintain their power balance. This will help the system operator reduce their need to contract and use reserve power and consequently reducing total costs. These new regulations will reduce the net income from producers of wind and other power plants that cannot control their production, like run of river hydro power plants. The market for electricity is currently divided into three consecutive markets. Nord Pool fixes the price the day ahead of operation, followed by the intra-day market Elbas (not in Norway), where power is traded up to one hour before operation, and lastly, the balancing market which helps maintain the balance in the operational hour and settles the costs afterwards. The costs of balancing wind power production in the balancing market (1- price and 2-price) are analysed. Wind series from three Norwegian wind parks have been nominated to the spot market and the deviation settled in the balancing market, by the 1-price settlement as reference and the 2-price settlement. The nominations have been done to three different years; 2004, 2005 and 2006 in Norway, and park A is nominated to 2006 in Sweden and Denmark. It is assumed that the wind power production and the spot and regulating prices are independent of each-other. The resulting change in income with deviation compared to making no prediction error for a 100 MW wind farm is presented. The highest loss compared to making no prediction error is when making a common bid for park A and B (11 677 000 in 2006), followed by the common bid for park A+B with wind series from the second year(8 555 000 in 2006) and park A (7 733 000 in 2006) in Denmark. One of the best ways to integrate large amounts of wind energy is to improve the forecasting methods. In that way the production planning will go easier, and deviations and corresponding costs are reduced. The savings achieved by introducing a prediction tool equals 3 523 000, 4 122 000, 4 921 000 compared to the base case of the corresponding MAEs equal to 39%,30% and 18%. The smoothing effect emerges when nominating geographically spread parks in a group(Holtinnen, 2005). Three parks, that are separated by several 100 km, are nominated by a single BRP. The resulting costs compared to separate nominations are reduced by 31,5 %. This result requires that the wind farms is in the same price area, which they in this case does not. The result is interesting nevertheless as Nordel continuously seek to to invest in transmission capacity in order to create an efficient Nordic market for electricity. The Elbas market is mainly a market to reduce risks. If a deviation should occur it is likely that the best way for balancing it, will be in the regulating market. This is due to the principle of the merit order, which implies that the cheapest regulating power offered is used first. By comparing the data there were quite a few hours were the middle Elbas price was higher than the regulating price. In this sense it might have been wise to wait, although the lower regulating price may also have been a result of more energy being settled in the Elbas market, reducing the volume needed to be settled in the regulating market, and accordingly reducing the price.</p>
43

International trade with electric power

Årdal, Frode January 2009 (has links)
<p>In 2003 the European Commission introduced the Directive 2003/54/EC and Regulation 1228/2003/EC which increased the focus on the liberalization of the European electricity market. The international electricity trade has increased and created new challenges related to cross-border transmission and compensation mechanisms. The focus of the report has been to discuss the development of the electricity market in Europe, and the status of international exchange. The report also discusses the concept of cross-border trade and transit, and investigates a proposed ITC model and whether correct investment incentives are given. Price data from the main power exchanges in Europe indicate that the market is experiencing increasingly integration and efficiency. There has also been a trend towards market based congestion management methods. Regional markets have successfully developed in Spain and Portugal (the Iberian market) and between France, Belgium and The Netherlands (the Trilateral Market Coupling, TLC). Further plans for regional coupling are also underway (see chapter 5. The most common definition of transit is the one adopted by ETSO (Association of European Transmission System Operators), where transit is defined as the minimum between exports and imports. This definition could create opportunities for market participants to manipulate transit income (discussed in chapter 5.3). The Inter-TSO compensation (ITC) model used in this report is based on the With-and-Without transit algorithm. The model only focuses on costs and load flow, and do not include market incentives or evaluation of benefits. The model bases the compensation calculation on the transit term, which can lead to misguided identification of network responsibility. Two scenarios were compared with a base case scenario in order to identify possible investment incentives. The first scenario included a situation where one of the cross-border lines in the network was constrained. Results from this simulation indicate that the transmission system operators involved would experience increased ITC payment, and therefore not receive investment incentives. The TSOs involved would benefit from the bottleneck in form of increased revenue (assuming Cost-Of-Service regulation). In the second scenario an extra cross-border line was implemented, and the situation was compared to the base case. The results from this simulation show that the TSOs involved would receive a positive effect in form of reduced ITC cost. The ITC mechanism would in this case be in line with the European Commission’s Regulation 1228/2003/EC, and give the involved TSOs correct investment incentives. The lack of correlated results in these two cases indicates that the ITC mechanism (in this case modeled by the WWT algorithm) cannot be regarded as relevant from an investment incentive perspective (more information found in chapter 7.3).</p>
44

Fixed Speed Electric Motor Drives for LNG Refrigeration Compressors. : Back-to-Back Starting Methods and Grid Consequences.

Breistein, Hallvard January 2009 (has links)
<p>Experimental studies as well as simulations have been performed on the Back-to-Back starting schemes low frequency-, partial frequency-, and soft -start-up. A Back-to-Back configuration of two synchronous machines has been established in the laboratory, upon which parameter estimation and start-up experiments have been performed. Extensive parameter estimation was conducted in order to replicate the laboratory machines in the simulation model as accurately as possible. This was done in order to verify the validity of the simulation model. Studies into the effects of inductance interconnecting the machines were made in the laboratory and in the simulation model. Effects of resistance and inertia were studied in the simulation model. It is concluded that the simulation model appears to be as reliable as is its input parameters. Discrepancies were found in line voltages, due to faulty implementation of field current replication. Full scale simulations using Motorformer parameters were performed in the simulation model, featuring low frequency- and soft -staring. The effects of an interconnecting cable were studied. It is concluded that low frequency starting appears to be most reliable and least violent starting method. However, it might be limited by the availability of a turbine. This is not the case for soft starting, which has a lower starting capability and is more violent to the motor damper- and field windings. Low frequency startig is the recommended starting method of the ones studied. Dynamic short circuit simulations were done on a fixed speed LNG-facility. The fixed speed alternative appears to be more stable when responding to a short circuit. This is because the motors contribute to upholding the voltage during a fault by delivering reactive power to the short circuit, and because the motors do not loose all torque as is the case for LCI drives when the voltage dip exceeds 20$%$. Further work is needed in up-scaling the experiments. A sophisticated simulation model should be established and its validity tested on the up-scaled experiments. Preliminary custom design of machines should be initiated depending on what starting scheme is chosen. Custom machine parameters should then be used in full scale simulation using the more sophisticated model.</p>
45

Decision support from monitoring of hydro power stations : An approach to the vision of monitoring systems giving decision support in operation of hydro power stations

Mikkelsen, Joar Hylland January 2009 (has links)
<p>This report is the results of the work on a master thesis concerning intelligent monitoring of hydro power stations. In the report two different types of computer software is investigated to find out whether they are suitable to make out a monitoring system capable of giving the user information about faults and unwanted operating conditions at an early stage. It is also investigated whether the software has proven the capability to detect faults and unwanted operating conditions. The different advantages and disadvantages of the two software products are commented and the two software products are compared. This report shows that the two software products are quite different. The software from Volve is software meant to construct an expert system capable of recognising faults from previous cases of faults. The software from SKF is software that gives intelligent machine diagnostics from analysis of vibration measurements in addition to measuring and trending of other variables. It also gives the user tools for analysing the root cause of faults influencing the bearing system of different industry machinery. This means that the software from SKF demands some involvement from the user to produce the best and most precise results. The expert system developed from the Volve software on the other hand is meant to present only results and advice to the user. The results from tests and simulations of the expert system developed by the Volve software are very limited. It is not possible to conclude which of the two software products is better before more tests of the Volve system is performed. In addition to the investigation of these two monitoring software products two different types of sensors are investigated. The sensors that are investigated are smoke sensors and sensors for detection of ultrasonic sound. Both types are commonly used in monitoring of industry processes similar to those in hydro power stations. These two sensors are capable of giving additional information to the monitoring system making it possible to detect faults that it is difficult to detect today. This is because the two sensor types perform measurements that the normal measuring equipment of today is incapable of. This will increase the information flow to the monitoring systems of hydro power stations making it possible to perform better and more precise monitoring.</p>
46

Wave Energy Conversion : Simulation Verification and Linearization of Direct Drive Wave Energy Converter with Variable DC-link Voltage Control

Ditlefsen, Arne Marius January 2009 (has links)
<p>Lowering the cost of wave energy conversion is an essential task for it to succeed as a future energy resource. In this work a converter, assumed cheaper than the regular back to back converter setting, have been investigated for a electric direct drive point absorber. Both experimental work and simulations are used in the analysis. In the experimental work, a permanent magnet generator with a 6-pulse diode rectifier, a DC-link and a DC/DC converter equivalent, was used. Steady state, dynamic and transient measurements were preformed and a simulation model was compared to the measurements. Good results were obtained and deviations were in general small, mostly +-3% for voltage and current measurements and +-8% for torque measurements. Based on transient measurements and simulations a general linearization of the system was made in order to obtain useful information about the system. A step up converter was used in the simulation and it demonstrated stable passive loading control. By using the information obtained by the linearization, the performance of the simulation model was improved by decreasing the DC-link capacitance. The modified simulation model had significant less torque ripple than the initial. The linearization model also can been used to identify time delay represented by the power take off unit in a wave energy converter. This will be done for a commercial size wave energy converter summer 2009.</p>
47

Optimal use of the hydro resources in Albania

Ose, Heidi Theresa January 2009 (has links)
<p>This Master thesis analyzes the optimal use of the hydro resources in Albania. Albania is a country totally dependent on hydro power. More than 90% of the electricity today comes from hydro power, mainly from the Drin river system. There are three hydro power plants located in the Drin river system: Fierze (500 MW), Koman (600 MW) and Vau Dejes (250 MW). Only one third of Albania’s hydro power potential is today exploited, and Albania is a net importer of energy. The main objective with this study is to analyze the utilization of the hydro resources in Albania and look at potential improvements in the short term (next years) and the long term (after Albania joins the regional market). Two scenarios were worked out. The first scenario focuses on the present market situation in Albania. Investigations are done through simulations with the EOPS model. The results were analyzed and compared with historical data to discover potential upgrades of the utilization of water in Fierze, Koman and Vau Dejes. In the simulations the production in Drin river system is increased with 1.3 TWh in an average year. Fierze power plant has the highest potential with 25% more production in the simulation than what is shown through historical data. Under the process towards a liberalized market, the optimizing problem regarding the production planning will change. Today the main task is cost minimization given an expected demand. In a free market it will be profit maximizing given a price expectation. A second scenario dealing with the potential market situation in Albania in 2020 was worked out. In addition to the new market situation four new power plants were included in the EOPS model. With new plants in the Drin and a functioning market it is possible to achieve 1 TWh more production during an average year compared with the simulation for the present market situation in Albania. If the implementation of the market, new power plants and transmission lines are accomplished, the supply situation in Albania will improve substantially through more secure power delivery. However a participation in a regional market forces the production company to plan each day like the participants in the Nordic market, both in the long and short the term, to be able to exploit the technical and financial opportunities and develop their country.</p>
48

Impact on Wind Turbine Systems from Transient Fluctuations in Offshore Utility Grids

Einervoll, Torger January 2009 (has links)
<p>Gas turbines in offshore power systems contribute to about 23% of Norway’s total emissions of CO2. One method for reducing these emissions could be the addition of wind turbines to the offshore utility grids. Power from shore is another alternative, but has been proven costly due to long cables and expensive HVDC converter stations. In this thesis work, the behaviours of different wind turbine technologies during transient fluctuations in an offshore utility grid have been studied. For this purpose, a dynamic model for an offshore oil platform was developed. Models of squirrel cage and doubly fed induction generator based turbines were developed as well. None of the modelled generators experienced problems with the disturbances caused by the electromechanical transient fluctuations. Based on the behaviour of the DFIG’s grid side converter, it is believed that the result would be the same for a wind turbine with full frequency conversion. Variable speed wind turbines are expected to remain controllable throughout electromechanical transient fluctuations such as for the simulated case. However, the controllers, converters and equipment have to be designed while bearing these fluctuations in mind. The controllability of the variable speed wind turbines could be used to contribute to voltage control by production and consumption of reactive power. A controller scheme with the purpose of stabilising the voltage at the gas turbine generators’ terminal was developed, but had low impacts on the power system behaviour. A stator flux feed forward term for the speed controller was developed. The term stabilised the power output of the doubly fed induction generator. However, the impact on the power system’s frequency response was minimal, and there is probably no material value of such an addition to the control loop.</p>
49

Behovsstyrt ventilasjon i yrkesbygg : Konsekvenser for energibruk og inneklima

Olufsen, Andreas Opsahl January 2007 (has links)
There were three main objectives in this thesis. The first objective was to find the utility patent of a building at the Norwegian University of Science &amp; Technology. This was performed using logged data from infrared motion sensor readings over a period of twenty nine days. Main finding suggests an average presence during working hours (8 AM – 3 PM) of 57 %. A utility patent developed and based on the twenty nine days of logged data shows the expected occupancy at any time during a normal working day. The second objective, sensor accuracy, is estimated based on comparison of logged data and manual registrations over two days. This information formed a basis for discussion of how well the infrared motion sensors performed. In this building, the conclusion is that ceiling mounted sensors perform better than wall mounted sensors. The third objective is to develop a computer model of the building and simulate it with two different ventilation systems. One simulation is of a CAV system, while the other is a VAV system that is able to adjust its minimum OA requirements according to the registered utility patent found in the first objective of the thesis. The computer model was developed with DOE2. The VAV system proved to perform far more efficient than the CAV system for a one year simulation. The hot water demand was reduced by 51%, cold water by 57%, and fan energy dropped by 76%.
50

Large-scale Wind Power integration in a Hydro-Thermal Power Market

Trøtscher, Thomas January 2007 (has links)
This master thesis describes a quadratic programming model used to calculate the spot prices in an efficient multi-area power market. The model has been adapted to Northern Europe, with focus on Denmark West and the integration of large quantities of wind power. In the model, demand and supply of electricity are equated, at an hourly time resolution, to find the spot price in each area. Historical load values are used to represent demand which is assumed to be completely inelastic. Supply is modeled according to the type of generation: Thermal generators are represented by piecewise linear, upward sloping, marginal cost curves. Historical wind generation data is used to model the fluctuating wind power output, and wind power is considered to have zero marginal cost. Hydro power is modeled by one aggregate reservoir for Norway and one for Sweden; the marginal cost of hydro power is set as a function of the difference between the reservoir level and the historical median reservoir level. Additionally, decentral combined heat and power plants in Denmark are considered to operate irrespective of the market. Six separate price areas constitute the model: Denmark West, Denmark East, Norway, Sweden/Finland, Germany, and Central Europe. The areas are modeled as having no internal bottlenecks and are connected by tie-lines constrained by active power limits. This report quantifies the impact the installed wind power capacity has on the power price in Denmark West by scaling up the wind power output in the model. Because wind power has a marginal cost close to zero, it will force prices down. The effect will be most prominent during high wind speed hours in a power system with substantial amounts of wind power. Results show that the impact is modest; average power prices fall by only 10% if the installed wind power capacity is doubled, and thermal generation will set the power price in all hours until wind energy exceeds 50% of domestic demand in Denmark. Since prices fall the most during hours with high wind power output, income to wind turbine owners will decline quickly as the installed capacity becomes large. The effect is most pronounced at wind energy shares above 40%, thereafter the income -- per MWh sold -- falls rapidly. In absence of government subventions, this effect will limit the economically viable level of installed wind power capacity. Expansion of the cross-border transmission capacity and higher thermal generation costs can both help offset the income reduction to wind turbine owners from higher wind power penetration. Alone, a 30% increase in thermal generation costs can allow 50% of wind energy and still retain todays income to wind turbine owners. Use of the Norwegian hydro reservoirs to balance out fluctuations in wind power output is found to stabilize and reduce the price. This benefits both consumers and wind turbine owners in Denmark. Expansion of transmission capacity to Norway will further stabilize the price; a new 1000MW cable lets the Danish market easily accomodate 50% wind energy. With lower and more volatile prices as a result of high wind power penetration, a load can profit by being flexible. Water electrolysis is one such load; it uses electricity to produce hydrogen, and production can quickly be ramped up and down in accordance with the power price. Presently, steam methane reforming is the least expensive method of producing hydrogen, but with higher wind power penetration, electrolysis might become competitive. Using a previously developed model to assess the cost of electrolysis, in combination with the power market model developed here, this report finds that wind energy must exceed 85% of domestic demand in Denmark, combined with higher natural gas prices, for electrolysis to break even with steam methane reforming.

Page generated in 0.2323 seconds