• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Implementation and Verification of the Subgroup Decomposition Method in the TITAN 3-D Deterministic Radiation Transport Code

Roskoff, Nathan J. 04 June 2014 (has links)
The subgroup decomposition method (SDM) has recently been developed as an improvement over the consistent generalized energy condensation theory for treatment of the energy variable in deterministic particle transport problems. By explicitly preserving reaction rates of the fine-group energy structure, the SDM directly couples a consistent coarse-group transport calculation with a set of fixed-source "decomposition sweeps" to provide a fine-group flux spectrum. This paper will outline the implementation of the SDM into the three-dimensional, discrete ordinates (SN) deterministic transport code TITAN. The new version of TITAN, TITAN-SDM, is tested using 1-D and 2-D benchmark problems based on the Japanese designed High Temperature Engineering Test Reactor (HTTR). In addition to accuracy, this study examines the efficiency of the SDM algorithm in a 3-D SN transport code. / Master of Science
2

Generalized Energy Condensation Theory

Douglass, Steven James 15 November 2007 (has links)
A generalization of multigroup energy condensation theory has been developed. The new method generates a solution within the few-group framework which exhibits the energy spectrum characteristic of a many-group transport solution, without the computational time usually associated with such solutions. This is accomplished by expanding the energy dependence of the angular flux in a set of general orthogonal functions. The expansion leads to a set of equations for the angular flux moments in the few-group framework. The 0th moment generates the standard few-group equation while the higher moment equations generate the detailed spectral resolution within the few-group structure. It is shown that by carefully choosing the orthogonal function set (e.g., Legendre polynomials), the higher moment equations are only coupled to the 0th-order equation and not to each other. The decoupling makes the new method highly competitive with the standard few-group method since the computation time associated with determining the higher moments become negligible as a result of the decoupling. The method is verified in several 1-D benchmark problems typical of BWR configurations with mild to high heterogeneity.
3

Generalized spatial homogenization method in transport theory and high order diffusion theory energy recondensation methods

Yasseri, Saam 03 April 2013 (has links)
In this dissertation, three different methods for solving the Boltzmann neutron transport equation (and its low-order approximations) are developed in general geometry and implemented in 1D slab geometry. The first method is for solving the fine-group diffusion equation by estimating the in-scattering and fission source terms with consistent coarse-group diffusion solutions iteratively. This is achieved by extending the subgroup decomposition method initially developed in neutron transport theory to diffusion theory. Additionally, a new stabilizing scheme for on-the-fly cross section re-condensation based on local fixed source calculations is developed in the subgroup decomposition framework. The method is derived in general geometry and tested in 1D benchmark problems characteristic of Boiling Water Reactors (BWR) and Gas Cooled Reactor (GCR). It is shown that the method reproduces the standard fine-group results with 3-4 times faster computational speed in the BWR test problem and 1.5 to 6 times faster computational speed in the GCR core. The second method is a hybrid diffusion transport method for accelerating multi-group eigenvalue transport problems. This method extends the subgroup decomposition method to efficiently couple a coarse-group high-order diffusion method with a set of fixed-source transport decomposition sweeps to obtain the fine-group transport solution. The advantages of this new high-order diffusion theory are its consistent transport closure, straight forward implementation and numerical stability. The method is analyzed for 1D BWR and High Temperature Test Reactor (HTTR) benchmark problems. It is shown that the method reproduces the fine-group transport solution with high accuracy while increasing the computationally efficiency up to 16 times in the BWR core and up to 3.3 times in the HTTR core compared to direct fine-group transport calculations. The third method is a new spatial homogenization method in transport theory that reproduces the heterogeneous solution by using conventional flux weighted homogenized cross sections. By introducing an additional source term via an “auxiliary cross section” the resulting homogeneous transport equation becomes consistent with the heterogeneous equation, enabling easy implementation into existing solution methods/codes. This new method utilizes on-the-fly re-homogenization, performed at the assembly level, to correct for core environment effects on the homogenized cross sections. The method is derived in general geometry and continuous energy, and implemented and tested in fine-group 1D slab geometries typical of BWR and GCR cores. The test problems include two single assembly and 4 core configurations. It is believed that the coupling of the two new methods, namely the hybrid method for treating the energy variable and the new spatial homogenization method in transport theory set the stage, as future work, for the development of a robust and practical method for highly efficient and accurate whole core transport calculations.

Page generated in 0.125 seconds