• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Parallel-Node Low-Density Parity-Check Convolutional Code Encoder and Decoder Architectures

Brandon, Tyler 06 1900 (has links)
We present novel architectures for parallel-node low-density parity-check convolutional code (PN-LDPC-CC) encoders and decoders. Based on a recently introduced implementation-aware class of LDPC-CCs, these encoders and decoders take advantage of increased node-parallelization to simultaneously decrease the energy-per-bit and increase the decoded information throughput. A series of progressively improved encoder and decoder designs are presented and characterized using synthesis results with respect to power, area and throughput. The best of the encoder and decoder designs significantly advance the state-of-the-art in terms of both the energy-per-bit and throughput/area metrics. One of the presented decoders, for an Eb /N0 of 2.5 dB has a bit-error-rate of 106, takes 4.5 mm2 in a CMOS 90-nm process, and achieves an energy-per-decoded-information-bit of 65 pJ and a decoded information throughput of 4.8 Gbits/s. We implement an earlier non-parallel node LDPC-CC encoder, decoder and a channel emulator in silicon. We provide readers, via two sets of tables, the ability to look up our decoder hardware metrics, across four different process technologies, for over 1000 variations of our PN-LDPC-CC decoders. By imposing practical decoder implementation constraints on power or area, which in turn drives trade-offs in code size versus the number of decoder processors, we compare the code BER performance. An extensive comparison to known LDPC-BC/CC decoder implementations is provided.
2

Parallel-Node Low-Density Parity-Check Convolutional Code Encoder and Decoder Architectures

Brandon, Tyler Unknown Date
No description available.
3

Intelligent real-time environment and process adaptive radio frequency front-ends for ultra low power applications

Banerjee, Debashis 21 September 2015 (has links)
In the thesis the design of process tolerant, use-aware radio-frequency front-ends were explored. First, the design of fuzzy logic and equation based controllers, which can adapt to multi-dimensional channel conditions, are proposed. Secondly, the thesis proves that adaptive systems can have multiple modes of operation depending upon the throughput requirements of the system. Two such modes were demonstrated: one optimizing the energy-per-bit (energy priority mode) and another achieving the lowest power consumption at the highest throughput (data priority mode). Finally, to achieve process tolerant channel adaptive operation a self-learning methodology is proposed which learns the optimal re-configuration setting for the system on-the-fly. Implications of the research are discussed and future avenues of further research are proposed.
4

DIGITAL RECEIVER PERFORMANCE

Troublefield, Robert C. 10 1900 (has links)
International Telemetering Conference Proceedings / October 23-26, 2000 / Town & Country Hotel and Conference Center, San Diego, California / Bit errors often occur in a wireless communications link when impairments alter the transmitted signal. It is advantageous to be able to predict how well a system will tolerate transmission problems. This paper details laboratory performance measurements and comparisons in terms of evaluating configurations of a digital receiver for Feher patented Quadrature Phase Shift Keying (FQPSK-B) demodulation. The transmitted signal is subjected to calibrated levels of impairments while the receiver performance is monitored in real-time.
5

Performance evaluation and protocol design of fixed-rate and rateless coded relaying networks

Nikjah, Reza 06 1900 (has links)
The importance of cooperative relaying communication in substituting for, or complementing, multiantenna systems is described, and a brief literature review is presented. Amplify-and-forward (AF) and decode-and-forward (DF) relaying are investigated and compared for a dual-hop relay channel. The optimal strategy, source and relay optimal power allocation, and maximum cooperative gain are determined for the relay channel. It is shown that while DF relaying is preferable to AF relaying for strong source-relay links, AF relaying leads to more gain for strong source-destination or relay-destination links. Superimposed and selection AF relaying are investigated for multirelay, dual-hop relaying. Selection AF relaying is shown to be globally strictly outage suboptimal. A necessary condition for the selection AF outage optimality, and an upper bound on the probability of this optimality are obtained. A near-optimal power allocation scheme is derived for superimposed AF relaying. The maximum instantaneous rates, outage probabilities, and average capacities of multirelay, dual-hop relaying schemes are obtained for superimposed, selection, and orthogonal DF relaying, each with parallel channel cooperation (PCC) or repetition-based cooperation (RC). It is observed that the PCC over RC gain can be as much as 4 dB for the outage probabilities and 8.5 dB for the average capacities. Increasing the number of relays deteriorates the capacity performance of orthogonal relaying, but improves the performances of the other schemes. The application of rateless codes to DF relaying networks is studied by investigating three single-relay protocols, one of which is new, and three novel, low complexity multirelay protocols for dual-hop networks. The maximum rate and minimum energy per bit and per symbol are derived for the single-relay protocols under a peak power and an average power constraint. The long-term average rate and energy per bit, and relay-to-source usage ratio (RSUR), a new performance measure, are evaluated for the single-relay and multirelay protocols. The new single-relay protocol is the most energy efficient single-relay scheme in most cases. All the multirelay protocols exhibit near-optimal rate performances, but are vastly different in the RSUR. Several future research directions for fixed-rate and rateless coded cooperative systems, and frameworks for comparing these systems, are suggested. / Communications
6

Performance evaluation and protocol design of fixed-rate and rateless coded relaying networks

Nikjah, Reza Unknown Date
No description available.

Page generated in 0.0849 seconds