• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Research on efficient driving method of heavy hydraulic excavator boom

Xia, Lianpeng, Quan, Long, Ge, Lei, Hao, Yunxiao, Zhao, Bin, Li, Bin 25 June 2020 (has links)
There is a lot of gravitational potential energy waste when hydraulic excavators work, which seriously affects the efficiency of the whole machine and produces a large amount of emissions. In order to reduce the energy consumption and emissions of large hydraulic excavators which the boom is driven by two hydraulic cylinders, an integrated drive and potential energy recuperation principle is proposed. In the implementation, the original two-chamber hydraulic cylinders are replaced by three-chamber hydraulic cylinders with energy storage chambers, and the energy storage chambers are directly connected with the hydraulic accumulator. The dead weight of the working device is balanced by the initial hydraulic pressure of the hydraulic accumulator, and the gravitational potential energy is directly recuperated. A digital prototype is established for the simulation work to verify the energy-saving effect. Then a test prototype is constructed according to the simulation work. The standard 90° loading duty cycle tests show that compared with the standard hydraulic excavators of the same type, in the case of meeting the same digging force, the working efficiency of the excavator increases by 20.7% and the fuel consumption decreases by 17.1%. In terms of 8 hours of work per day, a single excavator can save fuel up to 47 L per day and reduce carbon dioxide emissions by 123.6 kg.
2

Cellulose-Based Hydrogels for High-Performance Buildings and Atmospheric Water Harvesting

Noor Mohammad Mohammad (17548365) 04 December 2023 (has links)
<p dir="ltr">Smart windows, dynamically adjusting optical transmittance, face global adoption challenges due to climatic and economic variability. Aiming these issues, we synthesized a methyl cellulose (MC) salt system with high tunability for intrinsic optical transmittance (89.3%), which can be applied globally to various locations. Specifically, the MC window has superior heat shielding potential below transition temperatures while turning opaque at temperatures above the Lower Critical Solution Temperature (LCST), reducing the solar heat gain by 55%. Such optical tunability is attributable to the particle size change triggered by the temperature-induced reversible coil-to-globular transition. This leads to effective refractive index and scattering modulation, making them prospective solutions for light management systems, an application ahead of intelligent fenestration systems. MC-based windows demonstrated a 9°C temperature decrease compared to double-pane windows on sunny days and a 5°C increase during winters in field tests, while simulations predict an 11% energy savings.</p><p dir="ltr">Incorporating MC-based phase change materials in passive solar panels indicated optimized energy efficiency, offering a sustainable alternative. Real-time simulations validate practical applicability in large-scale solar panels. Furthermore, a temperature-responsive sorbent with a dark layer demonstrates an optimal optical and water uptake performance. Transitioning between radiative cooling and solar heating, the sorbent exhibits high water harvesting efficiency in lab and field tests. With an adjustable LCST at 38 ℃, the cellulose-based sorbent presents a potential solution for atmospheric water harvesting, combining optical switching and temperature responsiveness for sustainable water access. Furthermore, the ubiquitous availability of materials, low cost, and ease-of-manufacturing will provide technological equity and foster our ambition towards net-zero buildings and sustainable future.</p>
3

The analysis of primary metered half-hourly electricity and gas consumption in municipal buildings

Ferreira, Vasco Guedes January 2009 (has links)
This thesis addressed the need for improved analysis and interpretation of primary meter half-hourly energy consumption data. The current work offers a novel benchmarking technique that was tested for 6 types of municipal buildings. This approach is different from conventional annual benchmarking mainly because it uses electricity and gas data in half-hourly periods, together with outside temperature data. A survey to European local authorities’ metering and monitoring practices was conducted in order to assess municipal energy managers' current procedures and needs in terms of data analysis to assess building energy performance and to identify potential energy saving opportunities. The benchmarking approach was developed considering the energy managers’ needs, but also the state-of the art in terms of building energy monitoring techniques, particularly building energy signatures, and the analysis techniques used on electricity grid demand forecasting. The benchmarking approach is based on the use of a metric composed of several indicators that are related to the load demand shape profile and the building energy signature. The comparison of indicators for buildings of the same type using standard scores identifies uncommon load demand profile characteristics and/or gas dependency on outside temperature in specific buildings. The metric is able to support the identification of potential energy wastage, which is linked to the detection of opportunities to save energy. The benchmarking technique was tested in 81 municipal building owned by Leicester City Council. This methodology can be applied to any non-domestic building equipped with primary meters for registering half-hourly electricity and gas consumption. In theory, this approach can also be applied to residential buildings, and to other short time series data types, for example quarter-hourly or 10 minutes interval data. The main contribution of this thesis is to improve the objectivity of building primary meter half-hourly electricity and gas consumption data analysis and interpretation by using quantitative parameters, instead of subjective visualisation techniques. The interpretation of building consumption data in short time series periods can now be streamlined, automated and perhaps incorporated in existing energy analysis software. This thesis raises questions that can lead to future research projects aiming to improve the metric and also to enlarge the scope of its application to national and European scale, to other building types and to other utilities.

Page generated in 0.5155 seconds