• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Seed Ecology of Rare and Endangered Gibbens' Beardtongue (Penstemon gibbensii) and Blowout Penstemon (Penstemon haydenii)

Tilini, Kassie Lorraine 14 June 2013 (has links) (PDF)
Penstemon gibbensii and Penstemon haydenii are two rare, perennial forbs inhabiting remote areas of the western United States. P. gibbensii is listed as a sensitive species by the Bureau of Land Management (BLM) in Colorado, Utah, and Wyoming (Heidel, 2009). P. haydenii was designated as Endangered by the U.S. Fish and Wildlife Service in 1987 (Heidel, 2012). This thesis research was geared toward helping land managers in their efforts to protect and rehabilitate these species by providing understanding on different aspects of their seed ecology. My first study was a laboratory experiment performed on P. gibbensii and P. haydenii seed germination response to moist chilling and dry after-ripening. Wild harvested seeds were subjected to moist chilling at 2-4 °C for 0, 4, 8, 12, and 16 weeks and held in dry storage for approximately 2 years to determine effective methods for breaking primary dormancy. P. gibbensii seed germination increased consistently with increased length of chilling up to 16 weeks and exhibited habitat-correlated variation in this response. P. haydenii seed germination increased from 1 to 100% germination with 4 weeks of chilling. P. haydenii germination was greatest (96%) when incubated under a cool, diurnally-fluctuating temperature regime (10-20 °C) and responded positively to dry storage, increasing germination from 0 to 15%. My second study was an in situ field study designed to characterize the active seed bank of P. haydenii. We set up a transect line across a P. haydenii population and measured the number of seeds entering the seed bank, lost to predation post-dispersal, and persisting in the seed bank. P. haydenii does not appear to form an ecologically significant seed bank. Approximately 140 seeds/ 10m2 could potentially enter the seed bank but only 1 seed in the upper 10cm of sand persisted. Heavy post-dispersal insect predation resulted in a decrease in viability of nearly 30% in exposed P. haydenii seeds after just 12 hours. My third study explored the effects of burial by sand on P. haydenii. Wild-harvested seeds were planted in pots at 1, 2, 4, 6, 8, and 10cm deep in sand and incubated at 10-20 °C. Seed germination and mortality and seedling emergence were measured. The response of dormant seeds to post-burial incubation was determined. Burial depth decreased seedling emergence and seed germination. Shallow burial appears to induce secondary dormancy for seeds that don't germinate quickly, whereas deep burial appears to impose enforced dormancy in burial.

Page generated in 0.2738 seconds