• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 7
  • 3
  • 1
  • Tagged with
  • 25
  • 25
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Remotorizace lehkého sportovního letounu / Light sport aircraft engine replacement

Totogashvili, Nikolozi January 2020 (has links)
Práce je zaměřena na nalezení optimálního a nového motoru pro PS-28 Sport Cruiser, pro větší výkon a tah. Rotax 912 ULS je v současné době jediným motorem, který klient této práce (Czech Aircraft Works, dále jen CZAW) instaluje do letadel Sport Cruiser. Tato čtyřválcová pohonná jednotka má maximální vzletový výkon 100 hp. Pro náročnější zákazníky bude nabídka rozšířena o Lycoming O-235-L2C, což je také čtyřválcový motor s maximálním vzletovým výkonem 118 koní. Což znamená, že společnost bude mít větší možnost a klient bude mnohem spokojenější.
22

Rekonstrukce sportovního letounu M-2 Skaut - zástavba pohonné jednotky. / Reconstruction of Sport Aircraft M-2 Skaut - Mounting of Power Unit.

Zakopal, Libor January 2008 (has links)
This diploma thesis deals with the design of an engine mount for the M-2 Skaut aircraft on the basis of LSA and CS-VLA specifications. It is divided into several sections: analysis of input conditions, determination of factors which influence the geometry, the main design and its verification using the Finite Element Method. The FEM is compared with an analytical solution to determine its accuracy. This thesis also deals with a selection of acceptable propelers for this engine along with a basic design of an oil and fuel system.
23

Kinematically singular pre-stressed mechanisms as new semi-active variable stiffness springs for vibration isolation

Azadi Sohi, Mojtaba 11 1900 (has links)
Researchers have offered a variety of solutions for overcoming the old and challenging problem of undesired vibrations. The optimum vibration-control solution that can be a passive, semi-active or active solution, is chosen based on the desired level of vibration-control, the budget and the nature of the vibration source. Mechanical vibration-control systems, which work based on variable stiffness control, are categorized as semi-active solutions. They are advantageous for applications with multiple excitation frequencies, such as seismic applications. The available mechanical variable stiffness systems that are used for vibration-control, however, are slow and usually big, and their slowness and size have limited their application. A new semi-active variable stiffness solution is introduced and developed in this thesis to address these challenges by providing a faster vibration-control system with a feasible size. The new solution proposed in this thesis is a semi-active variable stiffness mount/isolator called the antagonistic Variable Stiffness Mount (VSM), which uses a variable stiffness spring called the Antagonistic Variable stiffness Spring (AVS). The AVS is a kinematically singular prestressable mechanism. Its stiffness can be changed by controlling the prestress of the mechanisms links. The AVS provides additional stiffness for a VSM when such stiffness is needed and remains inactive when it is not needed. The damping of the VSM is constant and an additional constant stiffness in the VSM supports the deadweight. Two cable-mechanisms - kinematically singular cable-driven mechanisms and Prism Tensegrities - are developed as AVSs in this thesis. Their optimal configurations are identified and a general formulation for their prestress stiffness is provided by using the notion of infinitesimal mechanism. The feasibility and practicality of the AVS and VSM are demonstrated through a case study of a typical engine mount by simulation of the mathematical models and by extensive experimental analysis. A VSM with an adjustable design, a piezo-actuation mechanism and a simple on-off controller is fabricated and tested for performance evaluation. The performance is measured based on four criteria: (1) how much the VSM controls the displacement near the resonance, (2) how well the VSM isolates the vibration at high frequencies, (3) how well the VSM controls the motion caused by shock, and (4) how fast the VSM reacts to control the vibration. For this evaluation, first the stiffness of the VSM was characterized through static and dynamic tests. Then performance of the VSM was evaluated and compared with an equivalent passive mount in two main areas of transmissibility and shock absorption. The response time of the VSM is also measured in a realistic scenario.
24

Kinematically singular pre-stressed mechanisms as new semi-active variable stiffness springs for vibration isolation

Azadi Sohi, Mojtaba Unknown Date
No description available.
25

Návrh letounu VUT 081 Kondor v dvoutrupové variantě / Design of VUT 081 Kondor aeroplane in double-fuselage variant

Suk, Filip January 2013 (has links)
The aim of the diploma thesis is to determine loads of the empennages and the engine mount for the engine ROTAX 912iS of the VUT 081 Kondor aircraft. Further the thesis deals with a design of a stabilizer and of beams of empennage with fins. I also present a design of mountings for beams to the center wing box. The design is presented with regard to CS-VLA regulations and the ELSA regulation for modular construction.

Page generated in 0.046 seconds