41 |
Computational models of human and animal larynx and vocal foldsBakhshaee, Hani January 2013 (has links)
Voice production is the result of the fluid-structure-interaction (FSI) of airflow through glottis and the vocal folds. The physics of the voice production consists of the geometry of the vocal folds and larynx, the aerodynamics of the airflow within larynx, and mechanical properties of the vocal folds. Through these physical aspects of voice production, engineering analyses can contribute to voice research. Creation of patient-specific computer models of the vocal folds and larynx may be considered as one of the main contributions of engineering studies in voice research. Person-to-person differences in voice parameters are considered in patient-specific models and as a result, they have high potential for clinical applications. In this dissertation, the aforementioned physical aspects of voice production were studied through the creation of patient-specific geometries, numerical analyses on glottal airflow, and investigation of the vocal folds' strain-stress field during oscillation. To address the geometry parameters, the patient-specific three-dimensional (3D) geometries of the vocal folds, larynx, and laryngeal cartilages (i.e., thyroid, cricoid and arytenoid) were built. Morphometric measurements were performed and the obtained results were compared to the existing cadaver data. Low discrepancies between these measurements indicate the feasibility of using Computed Tomography (CT) scan data for creation of 3D models. General laryngeal cartilage models were created while preserving all the biomechanically important morphometric features. A methodology to create accurate geometries of the vocal folds with desired glottal angles was introduced based on mapping high-speed digital imaging (HSDI) data with that from Magnetic Resonance Imaging (MRI). To address the fluid dynamics of voice production, the quasi-steady approximation in glottal airflow simulations was investigated in a two dimensional (2D) driven model. The surface area of the model was kept constant to avoid volume variations. Two-dimensional dynamic simulations of airflow through an idealized glottal orifice with moving walls were performed. A series of steady flow simulations was then performed using vocal fold configurations and boundary conditions that instantaneously coincide with data from the dynamic simulations. Aerodynamic parameters such as fluid flow rate, normal pressure on the vocal folds, shear stress on the glottal walls, and orifice discharge coefficients were compared between the dynamic and static simulations and similarities and differences were discussed. Three-dimensional simulations of the glottal airflow within patient-specific geometries were performed. One of the models was for a healthy subject and the second model was a postsurgical geometry from a patient with cancer. The effects of the geometry differences on the aerodynamic parameters such as orifice discharge coefficient and flow resistance were shown and discussed. To investigate the 3D nature of the glottal airflow, a 2D simulation was conducted in a computational domain made from a frontal CT scan image. The 2D results were compared to the corresponding slice in the 3D simulation. Significant differences between 2D and 3D simulations were observed in orifice discharge coefficients, jet flow deflection, and secondary flow, highlighting the importance of using realistic 3D models for glottal airflow simulations.To address the mechanical properties of the vocal folds, the deformation field on the superior visible surface of the vocal folds was captured in the excised larynx experiments using Digital Image Correlation (DIC). The initial pre-phonatory strain was measured using a dissection protocol and added to the relative strain obtained during the vocal folds' vibration to calculate the net strain. Kinematics of the vocal folds' oscillation was compared to that of synthetic models and similarities and differences were discussed. / La production de la voix résulte de l'interaction fluide-structure entre l'écoulement d'air dans la glotte et les cordes vocales. La physique de la production de la voix comporte trois aspects principaux que sont respectivement la géométrie des cordes vocales et du larynx, l'aérodynamique de l'écoulement d'air et les propriétés mécaniques des cordes vocales. Ces trois aspects de la production vocale se situent dans le cadre de l'ingénierie. La création de modèles numériques de cordes vocales et de larynx spécifiques à l'individu peut être vue comme une contribution majeure pour l'analyse technique dans la recherche sur la voix. Ces modèles ont beaucoup d'intérêt pour les applications médicales et thérapeutiques parce qu'ils prennent en compte la variation des propriétés des tissus et de la géométrie entre chaque individu. Dans cette thèse, trois aspects de la production vocale ont été pris en compte : la création de modèles géométriques propres à chaque individu, l'analyse numérique de l'écoulement glottique et la recherche des relations entre les déformations et les contraintes au sein des cordes vocales au cours de la vibration.Afin d'obtenir des paramètres géométriques, des modèles numériques de cordes vocales, du larynx et des cartilages laryngés ont été conçus en trois dimensions et pour chaque patient. Des mesures morphométriques ont été réalisées et comparées à des données ex-vivo. La faible divergence entre ces mesures a permis de valider l'utilisation de la tomographie par rayons X pour la création de modèles 3D. Des modèles standards de cartilages laryngés furent créés tout en conservant les caractéristiques biomécaniques importantes. Une méthode basée sur la mise en correspondance de données d'imageries haute vitesse (HSDI) et d'Imageries par Résonnance Magnétique (IRM), a été introduite pour créer des géométries précises des cordes vocales avec le contour glottique souhaité. La dynamique des fluides lors de la production vocale a été étudiée en utilisant une approximation quasi-statique de l'écoulement glottique dans un modèle 2D. La surface du modèle était fixée constante afin d'éviter des variations de volume et éliminer ainsi la création de sources monopôles parasites. Les simulations dynamiques à deux dimensions de l'écoulement de l'air ont alors été réalisées à travers une glotte idéale aux parois mobiles. Une série de simulations d'écoulement statique étaient alors réalisées en utilisant les configurations de cordes vocales ainsi que les conditions aux limites qui coïncidaient avec les données provenant des simulations dynamiques au même instant. Les paramètres aérodynamiques tels que le débit du fluide, la pression normale aux cordes vocales, la contrainte de cisaillement sur les parois glottiques, le coefficient de perte de charge ont été comparés et discutés pour les simulations dynamiques et statiques.Des simulations 3D de l'écoulement glottique ont été réalisées pour chaque modèle individuel. Une des géométries étaient considérée comme saine et la seconde correspondait à la géométrie post-chirurgicale pour un patient atteint d'un cancer. Les effets des différences géométriques sur les paramètres aérodynamiques tels que le coefficient de perte de charge dû à un changement de section et la résistance à l'écoulement ont été mis en valeur et discutés.Afin de caractériser les propriétés mécaniques des cordes vocales, le champ de déformation de la surface supérieure et visible des cordes vocales d'un larynx excisé a été mesuré à l'aide d'une technique de corrélation d'image numérique (DIC). La déformation initiale de pré-phonation a été mesurée à l'aide d'un récent protocole de dissection et ajoutée à la mesure de déformation relative obtenue pendant la vibration des cordes vocales afin de calculer la contrainte totale. La cinématique de l'oscillation de ces cordes vocales a alors été comparée à celle de modèles synthétiques afin d'observer les similitudes et les différences.
|
42 |
Multiscale mechanics and multiobjective optimization of cellular hip implants with variable stiffnessArabnejad, Sajad January 2013 (has links)
Bone resorption and bone-implant interface instability are two bottlenecks of current orthopaedic hip implant designs. Bone resorption is often triggered by mechanical bio-incompatibility of the implant with the surrounding bone. It has serious clinical consequences in both primary and revision surgery of hip replacements. After primary surgery, bone resorption can cause periprosthetic fractures, leading to implant loosening. For the revision surgery, the loss of bone stock compromises the ability of bone to adequately fix the implant. Interface instability, on the other hand, occurs as a result of excessive micromotion and stress at the bone-implant interface, which prevents implant fixation. As a result, the implant fails, and revision surgery is required.Many studies have been performed to design an implant minimizing both bone resorption and interface instability. However, the results have not been effective since minimizing one objective would penalize the other. As a result, among all designs available in the market, there is no implant that can concurrently minimize these two conflicting objectives. The goal of this thesis is to design an orthopaedic hip replacement implant that can simultaneously minimize bone resorption and implant instability. We propose a novel concept of a variable stiffness implant that is implemented through the use of graded lattice materials. A design methodology based on multiscale mechanics and multiobjective optimization is developed for the analysis and design of a fully porous implant with a lattice microstructure. The mechanical properties of the implant are locally optimized to minimize bone resorption and interface instability. Asymptotic homogenization (AH) theory is used to capture stress distribution for failure analysis throughout the implant and its lattice microstructure. For the implant lattice microstructure, a library of 2D cell topologies is developed, and their effective mechanical properties, including elastic moduli and yield strength, are computed using AH. Since orthopaedic hip implants are generally expected to support dynamic forces generated by human activities, they should be also designed against fatigue fracture to avoid progressive damage. A methodology for fatigue design of cellular materials is proposed and applied to a two dimensional implant, with Kagome and square cell topologies. A lattice implant with an optimum distribution of material properties is proved to considerably reduce the amount of bone resorption and interface shear stress compared to a fully dense titanium implant. The manufacturability of the lattice implants is demonstrated by fabricating a set of 2D proof-of-concept prototypes using Electron Beam Melting (EBM) with Ti6Al4V powder. Optical microscopy is used to measure the morphological parameters of the cellular microstructure. The numerical analysis and the manufacturability tests performed in this preliminary study suggest that the developed methodology can be used for the design and manufacturing of novel orthopaedic implants that can significantly contribute to reducing some clinical consequences of current implants. / La résorption osseuse et l'instabilité de l'interface os-implant sont deux goulots d'étranglement de modèles actuels d'implants orthopédiques de hanche. La résorption osseuse est souvent déclenchée par une bio-incompatibilité mécanique de l'implant avec l'os environnant. Il en résulte de graves conséquences cliniques à la fois en chirurgie primaire et en chirurgie de révision des arthroplasties de la hanche. Après la chirurgie primaire, la résorption osseuse peut entraîner des fractures périprothétiques, conduisant au descellement de l'implant. Pour la chirurgie de révision, la perte de substance osseuse compromet la capacité de l'os à bien fixer l'implant. L'instabilité de l'interface, d'autre part, se produit à la suite d'un stress excessif et de micromouvements à l'interface os-implant, ce qui empêche la fixation des implants. De ce fait, l'implant échoue, et la chirurgie de révision est nécessaire.De nombreuses études ont été réalisées pour concevoir un implant qui minimise la résorption osseuse et l'instabilité de l'interface. Cependant, les résultats n'ont pas été efficaces, car minimiser un objectif pénaliserait l'autre. En conséquence, parmi tous les modèles disponibles sur le marché, il n'y a pas d'implant qui puisse en même temps réduire ces deux objectifs contradictoires. L'objectif de cette thèse est de concevoir une prothèse orthopédique de la hanche qui puisse simultanément réduire la résorption osseuse et l'instabilité de l'implant. Nous proposons un nouveau concept d'implant à raideur variable qui est mis en œuvre grâce à l'utilisation de matériaux assemblés en treillis.Une méthodologie de conception basée sur la mécanique multi-échelle et l'optimisation multiobjectif est développé pour l'analyse et la conception d'un implant totalement poreux avec une microstructure en treillis. Les propriétés mécaniques de l'implant sont localement optimisés pour minimiser la résorption osseuse et l'instabilité d'interface. La théorie de l'homogénéisation asymptotique (HA) est utilisée pour capturer la distribution des contraintes pour l'analyse des défaillances tout le long de l'implant et de sa microstructure en treillis. Concernant cette microstructure en treillis, une bibliothèque de topologies de cellules 2D est développée, et leurs propriétés mécaniques efficaces, y compris les modules d'élasticité et la limite d'élasticité, sont calculées en utilisant le théorie HA. Puisque les prothèses orthopédiques de hanche sont généralement censées soutenir les forces dynamiques générées par les activités humaines, elles doivent être également conçues contre les fractures de fatigue pour éviter des dommages progressifs. Une méthodologie pour la conception en fatigue des matériaux cellulaires est proposée et appliquée à un implant en deux dimensions, et aux topologies de cellules carrées et de Kagome. Il est prouvé qu'un implant en treillis avec une répartition optimale des propriétés des matériaux réduit considérablement la quantité de la résorption osseuse et la contrainte de cisaillement de l'interface par rapport à un implant en titane totalement dense. La fabricabilité des implants en treillis est démontrée par la fabrication d'un ensemble de concepts de prototypes utilisant la fusion par faisceau d'électronsde poudre Ti6Al4V. La microscopie optique est utilisée pour mesurer les paramètres morphologiques de la microstructure cellulaire. L'analyse numérique et les tests de fabricabilité effectués dans cette étude préliminaire suggèrent que la méthodologie développée peut être utilisée pour la conception et la fabrication d'implants orthopédiques innovants qui peuvent contribuer de manière significative à la réduction des conséquences cliniques des implants actuels.
|
43 |
Synthesis and characterization of folate-PEG-conjugated polysaccharide nanoparticles for potential use as a targeted DNA carrierHoung, Simone January 2009 (has links)
Designing an effective gene delivery carrier, combining good transfection potential with material properties such as biocompatibility, non-immunogenicity, and nontoxicity, is a challenging problem under active research. Non-viral vectors attempt to match the transfection efficiency of viral vectors without the issues of immunogenicity and mutagenicity. The aim of this study was to synthesize a biopolymer-based DNA carrier modified to enhance circulation times in vivo and incorporating a targeting moiety to certain cancerous cells. This carrier is made of chitosan linked to folate as a targeting ligand through a poly(ethylene glycol) molecule. Nanoparticles formed by chitosan-PEG-folate linked to a secondary polymer, alginate, were further complexed with plasmid DNA. Successful synthesis of chitosan-PEG-folate was confirmed and particles formed in the desired size range with positive surface charge. Transfection was optimized in HEK 293T cells but preliminary evaluation in Caov-3 and MDA-MB-231 cells were not successful. Further investigation of chitosan-PEG-folate/alginate complexes should be undertaken to assess the full potential of this material as a DNA carrier. / Le design d’un transporteur efficace pour le largage du matériel génétique ayant à la fois un bon potentiel de transfection ainsi que des bonnes propriétés physicochimiques et biologiques telles que la biocompatibilité, non-immunogénicité et non-toxicité, suscite beaucoup d’intérêt en recherche biomédicale. Les efforts majeurs concentrés sur développement des vecteurs non-viraux tentent d’égaler des vecteurs viraux en termes d’efficacité de transfection, mais éviter les problèmes d’immunogénicié et de mutagénicité associés a ceux-ci. Le but de cette étude était de développer une véhicule de livraison de gène à base de biopolymères modifiés afin d’augmenter d’une part le temps de circulation in vivo et d’autre part de pouvoir cibler certaines cellules cancéreuses. Ce système constitue de chitosan liée au folate, comme ligand pour le ciblage, via d’un bras séparateur à base de poly éthylène glycol. Les nanoparticules formées par complexation de chitosan-PEG-folate et de l’alginate, au moyen d’interactions électrostatiques, sont par la suite chargées avec un plasmide d’ADN. La synthèse des chitosans modifiés ainsi que la formation des complexes ayant la taille et le chargement désirés ont été suivies avec des techniques adéquates de caractérisation. Par ailleurs, le protocole de transfection a été optimisé pour les cellules HEK 293T. Cependant, les résultats préliminaires avec les cellules Caov-3 et MDA-MB-231 ne semblent pas confirmer l’efficacité de ce système pour la transfection de ces dernières lignées cellulaires. Une étude plus approfondie du complexe chitosan-PEG-folate/alginate s’avère nécessaire afin de déterminer son plein potentiel comme transporteur d’ADN.
|
44 |
Delivery of IFNa and VEGF165b by microencapsulated cells: preparation and «in vitro» analysisAfkhami Zarreh, Fatemeh January 2009 (has links)
ABSTRACT The pivotal role of angiogenesis in the growth and spread of all solid tumors has driven the cancer research on applying antiangiogenic factors to suppress formation of new blood vessels in order to prevent or slow tumor growth. Glycoproteins, Interferon alpha (IFNα and VEGF165b are of particular interest in this study. IFNα is a multifunctional cytokine with many physiological effects including antiangiogenesis effects. VEGF165b is a competitive antagonist of the Vascular Endothelial Growth Factor (VEGF) receptor and has been reported to successfully inhibit angiogenesis. The thesis goal is to develop a system for simultaneous production of IFNα2b (IFNα) and VEGF165b and targeted delivery to enhance their antiangiogenic properties. For this purpose, HEK293 cells were developed to produce IFNα and VEGF165b simultaneously. The potential of a stable HEK293 cell line producing IFNα or VEGF165b to continuously deliver IFNα or VEGF165b after encapsulation in alginate-poly-l-lysine-alginate (APA) microcapsules was evaluated. For a better delivery system, co-encapsulation of HEK293 VEGF165b producing cells and HEK293 IFNα producing cells or a mixture of encapsulated HEK293 cells producing either IFNα or VEGF165b were studied. Attempts were also made to increase the bioactivity (pharmacodynamic) of IFNα by modifying its O-glycosylation to an N-glycosylation site and of VEGF165b by increasing its sialylation level. The bioactivity was investigated in experimental rats. The results suggest that one cell line, HEK293, can produce IFNα and VEGF165b simultaneously. This process has the advantage of ease of manipulation and low cost but is somewhat limited by the fact that production of IFNα and VEGF165b cannot be controlled. Microencapsulation of IFNα or VEGF165b producing cells demonstrates that encapsulated cells grow and remain viable within the microcapsules. The IFNα and VEGF165b released / RÉSUMÉLe IFNα est une cytokine multifonctionnelle avec plusieurs effets physiologiques incluant l'antiangiogenèse effets tandis que le VEGF165b est un antagoniste concurrentiel du récepteur de Vascular Endothelial Growth Factor (VEGF) et empêche avec succès l'angiogenèse. La thèse a pour but de développer un système pour la production simultanée du IFNα et du VEGF165b, de plus, que la livraison soit ciblée pour augmenter les propriétés antiangiogéniques. À cette fin, les cellules HEK293 ont été génétiquement modifiées pour produire simultanément l'IFNα et le VEGF165b. Le potentiel d'une lignée cellulaire HEK293 stable, produisant simultanément le IFNα ou VEGF165b pour livrer en perpétuité le IFNα et VEGF165b après l'encapsulation dans des microcapsules composé de l'alginate-poly-l-lysine-alginate (APA) a été évalué. Pour apporté des améliorations au système, deux mélanges ont été évalué. La co-encapsulation de cellules HEK293 produisant le VEGF165b et de cellules de HEK293 produisant IFNα et un mélange deux types de cellules encapsulées séparément ont été étudiés. Des tentatives ont été également accomplies pour augmenter leur bioactivité (pharmacodynamic) du IFNα en modifiant son O-glycosylation à un emplacement de N-glycosylation et de VEGF165b en augmentant son niveau de sialylation. La bioactivité a été étudiée chez les rats expérimentaux. Les résultats suggèrent que les cellules, HEK293, puissent produire l'IFNα et le VEGF165b simultanément. Ce processus a l'avantage de facilité la manipulation et de maintenir les coûts bas mais est légèrement limité par le fait que la production du d'IFNα et du VEG165Fb ne peut pas être contrôlée. Le microencapsulation de cellules produisant le IFNα ou VEGF165b démontrent que les cellules encapsulées se développent tout en retenant leur capacités de synthèses et demeurent viables d
|
45 |
Performance improvement of a dual-layered pixellated scintillation block using DETECT2000 Monte Carlo simulationsCayouette, François January 2002 (has links)
We have used DETECT2000, a Monte-Carlo simulation program, to find the theoretical performance of a dual-layered pixellated scintillation block used in high-resolution positron emission tomography. With DETECT2000, the best and worst-case scenarios for light photon transport were analyzed. It was found that certain crystals composing the scintillation block could not be recognized. Simulations about the removal of these crystals have shown no negative effect on the scintillation block performance. / With the help of actual data results collected on the scintillation block, the parameters for the model were improved in order to fit simulation results with practical data. When a good set of parameters was found, simulations were done in order to find other modifications in the scintillation block geometry that would increase its performance. We have found that these modifications that require relatively few manipulation steps give almost ideal results. A scintillation block that was modified according to the simulation model later confirmed the simulations.
|
46 |
Improved algorithm for classification of nystagmusRadinsky, Iliya January 2004 (has links)
An improved algorithm for classification of nystagmus was designed allowing the sorting of response segments even in severely non-linear patients and subjects with abnormally large phase shifts. The algorithm employs a model-based approach that was developed by Rey and Galiana (1991). The improved classification algorithm consists of two essential stages. In the first stage the eye velocity response is classified to obtain best possible estimates of the slow phase eye velocity intervals. In the second stage, the slow phase estimates are used to identify a response phase shift and non-linearity, and compensate for their effects. Multiple tests on simulated data and experimental data obtained from clinical subjects are presented. The results of the tests demonstrate that the algorithm is able to analyze the patient data with a high accuracy even in the presence of noise, eye-blinks and other artifacts.
|
47 |
Dipole localization using simulated intracerebral electroencephalogramsChang, Nathalie January 2004 (has links)
Interpreting intracerebral recordings in the search of an epileptic focus can be difficult because the amplitude of the potentials is misleading. Small generators located near the electrode site generate large potentials, which could swamp the signal of a nearby epileptic focus. In order to address this problem, two inverse problem algorithms, beamforming and RAP-MUSIC, were used with simulated intracerebral potentials to calculate equivalent dipole positions. Three dipoles were positioned in a semi-infinite plane medium near three intracerebral electrodes. Their potentials were simulated and contaminated with both white and correlated noise. Localization simulations for each type of noise showed that the two methods detected the sources accurately with RAP-MUSIC reporting lower orientation errors. A spatial resolution analysis for both methods was also performed to assess the separation ability of both methods. Beamforming adequately distinguished the sources separated by 1.2 cm, whereas RAP-MUSIC separated sources as close as 0.4--0.6 cm.
|
48 |
fMRI responses to first- and second-order modulations of visual texturesMortin, Catherine Leanne January 2004 (has links)
The world around us contains a variety of visual information, both first-order (luminance-defined) and second-order (defined by characteristics other than luminance). Previous studies suggest that the human visual cortex employs distinct mechanisms for segregating regions whose borders are defined by modulations of first- and second-order properties. This study uses a new approach of human psychophysics and fMRI experiments to explore the brain responses to both first-order and second-order (orientation, spatial frequency and contrast) texture borders. The results reveal differential activation among these modulations both in known retinotopic areas and in higher occipital/parietal regions. Orientation modulated textures elicit significantly different responses compared to modulations of other properties; whereas spatial frequency and contrast modulated textures produce similar responses. These findings suggest that higher visual cortical areas are heavily involved in texture processing, with a functional dissociation between segregating textures with modulations of (a) orientation, (b) spatial frequency or contrast and (c) luminance.
|
49 |
Use of a non-stationary Markov random field in brain tissue partial volume segmentationSingh, Vivek January 2005 (has links)
This thesis describes a novel approach to partial volume segmentation of cerebrospinal fluid (CSF) in sulci of 3D magnetic resonance (MR) brain images that overcomes a key limitation of other techniques. The method is based upon previous work in that it uses a Markov random field (MRF) to encourage adjacent voxels to have the same tissue label in most brain regions, but differs in that it adaptively reverses its behaviour to preserve tissue boundaries in sulci. Image curvature and medial surface information, both independent of MR pulse sequence, are used to identify regions where sulci have a high probability of occurring, in order to modulate MRF behaviour. The method is evaluated using both real and simulated data, showing a significant improvement in terms of sensitivity to voxels containing CSF. It is also shown qualitatively to be useful in improving a deformable model based cortical surface extraction procedure.
|
50 |
Effect of cobalt and chromium ions on osteoblasts in vitroFleury, Cyrille January 2005 (has links)
Despite the tremendous success of total hip arthroplasty (THA) in terms of cost and clinical results, this procedure has been restrained by long term outcomes. One of the major clinical concerns is the generation of UHMWPE particles leading to periprosthetic osteolysis. Because of their low volumetric wear rate, metal-on-metal bearings have emerged as an alternative. However, metal particles and ions released from metal hip prostheses due to wear and corrosion have been essential concerns for the orthopaedic community. In fact, several clinical studies have demonstrated elevated concentrations of metal ions in the systemic circulation and in the surrounding tissues in patient having a cobalt-chrome-molybdenum prosthesis. Moreover, cobalt and chromium ions are known for their potential to produce reactive oxygen species (ROS) via a Fenton-type reaction, making them prime suspects for disturbing the cellular balance of oxidants/anti-oxidants, and thus creating irreversible damage to the cell. Indeed, recent studies demonstrated that Co2+ and Cr3+ induced cell mortality and oxidation of proteins in macrophages. However, little is known about the effects of these ions on the osteogenic cells, which have a crucial role in controlling bone remodeling. The aim of the present study was to investigate the effect of Co2+ and Cr 3+ ions in human MG-63 osteoblast-like cells. / Our studies demonstrated that Co2+ and Cr3+ ions decreased the number of living cells and reduced the cellular activity of MG-63 osteoblasts. Likewise, microscopic observations revealed clear changes in terms of shape, size, and number of cells. Furthermore, Co2+ seems more toxic than Cr3+. Western blot analysis showed the induction of protein oxidation and protein nitration, which are biomarkers of oxidative stress, in a dose- and time-dependent manner with both ions. Antioxidant enzymes were also affected by the presence of ions, but in varying ways. HO-1 expression reached 6.0 and 1.9 times the control after 24h with 10 ppm Co2+ and 150 ppm Cr3+, respectively before decreasing thereafter. GPx expression was increased in a concentration- and time-dependent manner by Co2+ and Cr3+. CAT expression was decreased in the presence of Co2+ and up-reguated with Cr3+. / In conslusion, our results suggest that Co2+ and Cr 3+ are cytotoxic, which may include creation of ROS that disturb the cellular oxidative state of MG-63 osteoblasts. The stimulation of antioxidant enzymes does not seem sufficient to prevent cell death.
|
Page generated in 0.1481 seconds