• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Méthodologie de traitement conjoint des signaux EEG et oculométriques : applications aux tâches d'exploration visuelle libre / Methodology for EEG signal and eye tracking joint processing : applications on free visual exploration tasks

Kristensen, Emmanuelle 12 June 2017 (has links)
Nos travaux se sont articulés autour du problème de recouvrement temporel rencontré lors de l'estimation des potentiels évoqués. Il constitue, plus particulièrement, une limitation majeure pour l'estimation des potentiels évoqués par les fixations ou saccades oculaires lors d'une expérience en enregistrement conjoint EEG et oculométrie. En effet, la méthode habituellement utilisée pour estimer ces potentiels évoqués, la méthode par simple moyennage du signal synchronisé sur l'évènement d'intérêt, suppose qu'il y a un seul potentiel évoqué par essai. Or selon les intervalles inter-stimuli, cette hypothèse n'est pas toujours vérifiée. Ceci est d'autant plus vrai dans le contexte des potentiels évoqués par fixations ou saccades oculaires, les intervalles entre ceux-ci n'étant pas contrôlés par l'expérimentateur et pouvant être plus courts que les latences des potentiels d'intérêt. Le fait que cette hypothèse ne soit pas vérifiée donne une estimation biaisée du potentiel évoqué du fait des recouvrements entre les potentiels évoqués.Nous avons donc utilisé le Modèle Linéaire Général (GLM), méthode de régression linéaire bien connue, pour estimer les potentiels évoqués par les mouvements oculaires afin de répondre à ce problème de recouvrement. Tout d'abord, nous avons introduit, dans ce modèle, un terme de régularisation au sens de Tikhonov dans l'optique d'améliorer le rapport signal sur bruit de l'estimation pour un faible nombre d'essais. Nous avons ensuite comparé le GLM à l'algorithme ADJAR dans un contexte d'enregistrement conjoint EEG et oculométrie lors d'une tâche d'exploration visuelle de scènes naturelles. L'algorithme ADJAR ("ADJAcent Response") est un algorithme classique d'estimation itérative des recouvrements temporels développé en 1993 par M. Woldorff. Les résultats ont montré que le GLM était un modèle plus flexible et robuste que l'algorithme ADJAR pour l'estimation des potentiels évoqués par les fixations oculaires. Puis, deux configurations du GLM ont été comparées pour l'estimation du potentiel évoqué à l'apparition du stimulus et du potentiel évoqué par les fixations au début de l'exploration. Toutes deux prenaient en compte les recouvrements entre potentiels évoqués mais l'une distinguait également le potentiel évoqué par la première fixation de l'exploration du potentiel évoqué par les fixations suivantes. Il est apparu que le choix de la configuration du GLM était un compromis entre la qualité de l'estimation des potentiels et les hypothèses émises sur les processus cognitifs sous-jacents.Enfin, nous avons conduit de bout en bout une expérience d'envergure en enregistrement conjoint EEG et oculométrie portant sur l'exploration des expressions faciales émotionnelles naturelles statiques et dynamiques. Nous avons présenté les premiers résultats pour la modalité statique. Après avoir discuté de la méthode d'estimation des potentiels évoqués selon l'impact des mouvements oculaires sur leur fenêtre de latence, nous avons étudié l'effet du type d'émotion. Nous avons trouvé des modulations du potentiel différentiel EPN (Early Posterior Negativity), entre 230 et 350 ms après l'apparition du stimulus et du potentiel LPP (Late Positivity Potential), entre 400 et 600 ms après l'apparition du stimulus. Nous avons également observé des variations du potentiel évoqué par les fixations oculaires. Pour le potentiel LPP, qui est un marqueur de la reconnaissance consciente de l'émotion, nous avons montré qu'il était important de dissocier l'information qui est immédiatement encodée à l'apparition du stimulus émotionnel, de celle qui est apportée à l'issue de la première fixation. Cela met en évidence un motif d'activation différencié pour les stimuli émotionnels à valence négative ou à valence positive. Cette différenciation est en accord avec l'hypothèse d'un traitement plus rapide des stimuli émotionnels à valence négative que des stimuli émotionnels à valence positive. / Our research focuses on the issue of overlapping for evoked potential estimation. More specifically, this issue is a significant limitation for Eye-Fixation Related Potentials and Eye-Saccade Related Potentials estimations during a joint EEG and eye-tracking recording. Indeed, the usual estimation, by averaging the signal time-locked to the event of interest, is based on the assumption that a single evoked potential occurs during a trial. However, depending on the inter-stimulus intervals, this assumption is not always verified. This is especially the case in the context of Eye-Fixation Related Potentials and Eye-Saccade Related Potentials, given the fact that the intervals between fixations (or saccades) are not controlled by the experimenter and can be shorter than the latencies of the potentials of interest.The fact that this assumption is not verified gives a distorted estimate of the evoked potential due to overlaps between the evoked potentials.We have therefore used the Linear Model (GLM), a well-known linear regression method, to estimate the potentials evoked by ocular movements in order to take into account overlaps. First, we decided to introduce a term of Tikhonov regularization into this model in order to improve the signal-to-noise ratio of the estimate for a small number of trials. Then, we compared the GLM to the ADJAR algorithm in a context of joint EEG and eye-tracking recording during a task of visual exploration of natural scenes. The ADJAR ("ADJAcent Response") algorithm is an algorithm for iterative estimation of temporal overlaps developed in 1993 by M. Woldorff. The results showed that the GLM model was more flexible and robust than the ADJAR algorithm in estimating Eye-Fixation Related Potentials. Further, two GLM configurations were compared in their estimation of evoked potential at the onset of the stimulus and the eye-fixation related potential at the beginning of the testing. Both configurations took into account the overlaps between evoked potentials, but one additionally distinguished the potential evoked by the first fixation of the exploration from the potential evoked by the following fixations. It became clear that the choice of the GLM configuration was a compromise between the estimation quality of the potentials and the assumptions about the underlying cognitive processes.Finally, we conducted an extensive joint EEG and eye-tracking experiment on the exploration of static and dynamic natural emotional facial expressions. We presented the first results for the static modality. After discussing the estimation method of the evoked potentials according to the impact of the ocular movements on their latency window, we studied the influence of the type of emotion. We found modulations of the differential EPN (Early Posterior Negativity) potential, between 230 and 350 ms after the stimulus onset and the Late Positivity Potential (LPP) , between 400 and 600 ms after the stimulus onset. We also observed variations for the Eye-Fixation Related Potentials. Regarding the LPP component, a marker of conscious recognition of emotion, we have shown that it is important to dissociate information that is immediately encoded at the onset of the emotional stimulus from information encoded at the first fixations. This shows a differentiated pattern of activation according to the emotional stimulus valence. This differentiation is in agreement with the hypothesis of a faster treatment of negative emotional stimuli than of positive emotional stimuli.
2

Etude des processus attentionnels mis en jeu lors de l'exploration de scènes naturelles : enregistrement conjoint des mouvements oculaires et de l'activité EEG / The study of attentional processes involved during the exploration of natural scenes : joint registration of eye movements and EEG activity

Queste, Hélène 27 February 2014 (has links)
Dans la vie de tous les jours, lorsque nous regardons le monde qui nous entoure, nous bougeons constamment nos yeux. Notre regard se porte successivement sur différents endroits du champ visuel afin de capter l'information visuelle. Ainsi, nos yeux se stabilisent sur deux à trois régions différentes par seconde pendant des périodes appelées fixations. Entre deux fixations, nous réalisons des mouvements rapides des yeux pour déplacer notre regard vers une autre région ; on parle de saccades oculaires. Ces mouvements oculaires sont étroitement liés à l'attention. Quels sont les processus attentionnels mis en jeu lors de l'exploration de scènes ? Comment les facteurs liés à la scène ou à la consigne donnée pour l'exploration modifient-ils les paramètres des mouvements oculaires ? Comment ces modifications évoluent-elles au cours de l'exploration ? Dans cette thèse, nous proposons d'analyser conjointement les données oculométriques et électroencéphalographiques (EEG) pour mieux comprendre les processus attentionnels impliqués dans le traitement de l'information visuelle acquise pendant l'exploration de scènes. Nous étudions à la fois l'influence de facteurs de bas niveau, c'est-à-dire l'information visuelle contenue dans la scène et de haut niveau, c'est-à-dire la consigne donnée aux observateurs. Dans une première étude, nous avons considéré les facteurs de haut niveau à travers la modulation de la tâche à réaliser pour l'exploration des scènes. Nous avons choisi quatre tâches : l'exploration libre, la catégorisation, la recherche visuelle et l'organisation spatiale. Ces tâches ont été choisies car elles impliquent des traitements de l'information visuelle de nature différente et peuvent être classées en fonction de leur niveau de difficulté ou de demande attentionnelle. Dans une seconde étude, nous nous sommes focalisées plus particulièrement sur la recherche visuelle et l'influence de la contrainte temporelle. Enfin, dans une troisième étude, nous considérons les facteurs de bas niveau à travers l'influence d'un distracteur visuel perturbant l'exploration libre. Pour les deux premières études, nous avons enregistré conjointement les mouvements oculaires et les signaux EEG d'un grand nombre de sujets. L'analyse conjointe des signaux EEG et oculométriques permet de tirer profit des deux méthodes. L'oculométrie permet d'accéder aux mouvements oculaires et donc au déploiement de l'attention visuelle sur la scène. Elle permet de connaitre à quel moment et quels endroits de la scène sont regardés. L'EEG permet, avec une grande résolution temporelle, de mettre en avant des différences dans les processus attentionnels selon la condition expérimentale. Ainsi, nous avons montré des différences entre les tâches au niveau des potentiels évoqués par l'apparition de la scène et pour les fixations au cours de l'exploration. De plus, nous avons mis en évidence un lien fort entre le niveau global de l'activité EEG observée sur les régions frontales et les durées de fixation mais aussi des marqueurs de résolution de la tâche au niveau des potentiels évoqués liés à des fixations d'intérêt. L'analyse conjointe des données EEG et oculométriques permet donc de rendre compte des différences de traitement liées à différentes demandes attentionnelles. / In everyday life, when we explored the word, we moved continually our eyes. We focus your gaze successively on different location of the visual field, in order to get the visual information. In this way, our eyes became stable on two or three different regions per second, during period called fixation. Between two fixations, we make fast movements of the eyes to move our gaze to another position; it was called saccade. Eye movements are closely linked to attention. What are the attentional processes involved during scene exploration? How factors related to the scene or the task modify the parameters of eye movements? How these changes evolve during the exploration? In the thesis, we proposed to jointly analyze eye movements and electroencephalographic (EEG) data to better understand attentional processes involved during the processing of the visual information acquired during the exploration of scenes. We focused on low and high level factors. Low level factors corresponded to the visual information included in the scene and high level factors corresponded to the instruction give to observers. In a first study, we considered high level factors by manipulating the instructions for observers. We chose four tasks: free-exploration, categorization, visual search and spatial organization. These tasks were chosen because they involved different visual information processing and can be classified by level of difficulty or attentional demands. In a second study, we focused on the visual search task and on the influence of a time constraint. Finally, in a third study, we considered low level factors by analyzing the influence of a distractor disturbing the free-exploration of scenes. For the two first experiments, we jointly recorded eye movements and EEG signals of a large number of observers. The joint analysis of EEG and eye movement data takes advantage of the two methods. Eye tracking allowed to access to eye movements parameters and therefore to the visual attention deployment. It allowed knowing when and where the regions of the scene were gazed at. EEG allowed to access to differences on attentional processes depending on the experimental condition, with a high temporal resolution. We found differences between tasks for evoked potentials elicited by the scene onset and by fixations along the exploration. Furthermore, we demonstrated a strong link between the global EEG activity observed over frontal regions and fixation durations but also markers of the solving of the task on evoked potentials elicited by fixations of interest. Therefore, joint analysis of EEG and eye movement data allowed to report different processes related to attentional demanding.

Page generated in 0.1081 seconds