1 |
Entanglement MeasuresUyanik, Kivanc 01 February 2008 (has links) (PDF)
Being a puzzling feature of quantum mechanics, entanglement caused many debates since the infancy days of quantum theory. But it is the last two decades that it has started to be seen
as a resource for physical tasks which are not possible or extremely infeasible to be done classically. Popular examples are quantum cryptography - secure communication based on
laws of physics - and quantum computation - an exponential speedup for factoring large integers. On the other hand, with current technological restrictions it seems to be difficult to preserve specific entangled states and to distribute them among distant parties. Therefore a precise measurement of quantum entanglement is necessary. In this thesis, common bipartite
and multipartite entanglement measures in the literature are reviewed. Mathematical definitions, proofs of satisfaction of basic axioms and significant properties for each are given as
far as possible. For Tangle and Geometric Measure of Entanglement, which is a multipartite measure, results of numerical calculations for some specific states are shown.
|
2 |
Creation, transportation and engineering of entanglement between two separate qubit systemsSze-liang Chan Unknown Date (has links)
Quantum entanglement is widely renounced as one of the most fundamental concepts of quantum mechanics. Such phenomenon exhibit non-local interaction properties which cannot be explained classically. In this thesis, we address a number of problems associated with creating, transferring and engineering of entanglement between two separate parties. The work is motivated by a desire to better understand the dynamics of entanglement between systems. In particular, the research is mainly focused on the study of the dynamics of the well known maximally entangled Bell state under different influences such as decoherence and inter-qubit coupling. We show the connection between coherence and entanglement using the system sub jected to decoherence. We also confirm the transfer of entanglement between completely isolated partite using the double Jaynes-Cummings model. Based on this result, we propose a new conservation criterion proven to be general for single excitation systems. Such conservation criterion are then compared and extended to a general N qubit systems. In addition, an attempt is made to evaluate entanglement conservation rules for the EPR- like multipartite entanglement. We also describe a new technique for solving entanglement in the top-down way ignoring physical setup.
|
3 |
Creation, transportation and engineering of entanglement between two separate qubit systemsSze-liang Chan Unknown Date (has links)
Quantum entanglement is widely renounced as one of the most fundamental concepts of quantum mechanics. Such phenomenon exhibit non-local interaction properties which cannot be explained classically. In this thesis, we address a number of problems associated with creating, transferring and engineering of entanglement between two separate parties. The work is motivated by a desire to better understand the dynamics of entanglement between systems. In particular, the research is mainly focused on the study of the dynamics of the well known maximally entangled Bell state under different influences such as decoherence and inter-qubit coupling. We show the connection between coherence and entanglement using the system sub jected to decoherence. We also confirm the transfer of entanglement between completely isolated partite using the double Jaynes-Cummings model. Based on this result, we propose a new conservation criterion proven to be general for single excitation systems. Such conservation criterion are then compared and extended to a general N qubit systems. In addition, an attempt is made to evaluate entanglement conservation rules for the EPR- like multipartite entanglement. We also describe a new technique for solving entanglement in the top-down way ignoring physical setup.
|
4 |
Creation, transportation and engineering of entanglement between two separate qubit systemsSze-liang Chan Unknown Date (has links)
Quantum entanglement is widely renounced as one of the most fundamental concepts of quantum mechanics. Such phenomenon exhibit non-local interaction properties which cannot be explained classically. In this thesis, we address a number of problems associated with creating, transferring and engineering of entanglement between two separate parties. The work is motivated by a desire to better understand the dynamics of entanglement between systems. In particular, the research is mainly focused on the study of the dynamics of the well known maximally entangled Bell state under different influences such as decoherence and inter-qubit coupling. We show the connection between coherence and entanglement using the system sub jected to decoherence. We also confirm the transfer of entanglement between completely isolated partite using the double Jaynes-Cummings model. Based on this result, we propose a new conservation criterion proven to be general for single excitation systems. Such conservation criterion are then compared and extended to a general N qubit systems. In addition, an attempt is made to evaluate entanglement conservation rules for the EPR- like multipartite entanglement. We also describe a new technique for solving entanglement in the top-down way ignoring physical setup.
|
5 |
Ordering of Entangled States for Different Entanglement Measures / Ordning av Sammanflätningsgrad hos Kvantmekaniska Tillstånd för Olika MätmodellerSköld, Jennie January 2014 (has links)
Quantum entanglement is a phenomenon which has shown great potential use in modern technical implementations, but there is still much development needed in the field. One major problem is how to measure the amount of entanglement present in a given entangled state. There are numerous different entanglement measures suggested, all satisfying some conditions being of either operational, or more abstract, mathematical nature. However, in contradiction to what one might expect, the measures show discrepancies in the ordering of entangled states. Concretely this means that with respect to one measure, a state can be more entangled than another state, but the ordering may be opposite for the same states using another measure. In this thesis we take a closer look at some of the most commonly occurring entanglement measures, and find examples of states showing inequivalent entanglement ordering for the different measures. / Kvantmekanisk sammanflätning är ett fenomen som visat stor potential för framtida tekniska tillämpningar, men för att kunna använda oss av detta krävs att vi hittar lämpliga modeller att mäta omfattningen av sammanflätningen hos ett givet tillstånd. Detta har visat sig vara en svår uppgift, då de modeller som finns idag är otillräckliga när det gäller att konsekvent avgöra till vilken grad olika tillstånd är sammanflätade. Exempelvis kan en modell visa att ett tillstånd är mer sammanflätat än ett annat, medan en annan modell kan visa på motsatsen - att det första tillståndet är mindre sammanflätat än det andra. En möljig orsak kan ligga i de olika modellernas deifnition, då vissa utgår från operativa definitioner, medan andra grundas på matematiska, abstrakta villkor. I denna uppsats tittar vi lite närmre på några av de mätmodeller som finns, och hittar exempel på tillstånd som uppvisar olika ordning av sammanflätningsgrad beroende på vilken modell som används.
|
6 |
Correlations and quantum dynamics of 1D fermionic models : new results for the Kitaev chain with long-range pairing / Corrélations et dynamique quantique de modèles de fermions 1D : nouveaux résultats sur la chaîne de Kitaev avec pairing à longue portéeVodola, Davide 20 February 2015 (has links)
La première partie de la thèse étudie le diagramme de phase d’une généralisation de la chaîne de Kitaev qui décrit un système fermionique avec un pairing p-wave à long rayon qui tombe avec la distance ℓ comme 1/ℓα. On a analysé les lignes critiques, les corrélations et le comportement de l’entropie d’entanglement avec la taille du système. Nous avons démontré l’existence de deux régimes massifs, (i) où les fonctions de corrélation tombent exponentiellement à de courtes distances et comme puissance à de longues distances (α > 1), (ii) où elles tombent à puissance seulement (α < 1). Dans la seconde région l’entropie d’intrication d’un sous-système diverge logarithmiquement. Remarquablement, sur les lignes critiques, le pairing à long rayon brise la symètrie conforme du modèle pour des α suffisamment petits. On a prouvé ça en calculant aussi l’évolution temporelle de l’entropie d’intrication après un quench. Dans la seconde partie de la thèse nous avons analysé la dynamique de l’entropie d’intrication du modèle d’Ising avec un champ magnétique qui dépend linéairement du temps avec de différentes vitesses. Nous avons un régime adiabatique (de basses vitesses) lorsque le système évolue selon son état fondamental instantané; un sudden quench (de hautes vitesses) lorsque le système est congelé dans son état initial; un régime intermédiaire où l’entropie croît linéairement et, ensuite, elle montre des oscillations du moment que le système se trouve dans une superposition des états excités de l’Hamiltonienne instantanée. Nous avons discuté aussi du mécanisme de Kibble-Zurek pour la transition entre la phase paramagnétique et antiferromagnétique. / In the first part of the thesis, we propose an exactly-solvable one-dimensional model for fermions with long-range p-wave pairing decaying with distance ℓ as a power law 1/ℓα. We studied the phase diagram by analyzing the critical lines, the decay of correlation functions and the scaling of the von Neumann entropy with the system size. We found two gapped regimes, where correlation functions decay (i) exponentially at short range and algebraically at long range (α > 1), (ii) purely algebraically (α < 1). In the latter the entanglement entropy is found to diverge logarithmically. Most interestingly, along the critical lines, long-range pairing breaks the conformal symmetry for sufficiently small α. This can be detected also via the dynamics of entanglement following a quench. In the second part of the thesis we studied the evolution in time of the entanglement entropy for the Ising model in a transverse field varying linearly in time with different velocities. We found different regimes: an adiabatic one (small velocities) when the system evolves according the instan- taneous ground state; a sudden quench (large velocities) when the system is essentially frozen to its initial state; and an intermediate one, where the entropy starts growing linearly but then displays oscillations (also as a function of the velocity). Finally, we discussed the Kibble-Zurek mechanism for the transition between the paramagnetic and the ordered phase
|
Page generated in 0.0825 seconds