Spelling suggestions: "subject:"enter"" "subject:"entes""
11 |
Zpracování turkických jazyků / Processing of Turkic LanguagesCiddi, Sibel January 2014 (has links)
Title: Processing of Turkic Languages Author: Sibel Ciddi Department: Institute of Formal and Applied Linguistics, Faculty of Mathematics and Physics, Charles University in Prague Supervisor: RNDr. Daniel Zeman, Ph.D. Abstract: This thesis presents several methods for the morpholog- ical processing of Turkic languages, such as Turkish, which pose a specific set of challenges for natural language processing. In order to alleviate the problems with lack of large language resources, it makes the data sets used for morphological processing and expansion of lex- icons publicly available for further use by researchers. Data sparsity, caused by highly productive and agglutinative morphology in Turkish, imposes difficulties in processing of Turkish text, especially for meth- ods using purely statistical natural language processing. Therefore, we evaluated a publicly available rule-based morphological analyzer, TRmorph, based on finite state methods and technologies. In order to enhance the efficiency of this analyzer, we worked on expansion of lexicons, by employing heuristics-based methods for the extraction of named entities and multi-word expressions. Furthermore, as a prepro- cessing step, we introduced a dictionary-based recognition method for tokenization of multi-word expressions. This method complements...
|
12 |
Rozpoznávání pojmenovaných entit pomocí neuronových sítí / Neural Network Based Named Entity RecognitionStraková, Jana January 2017 (has links)
Title: Neural Network Based Named Entity Recognition Author: Jana Straková Institute: Institute of Formal and Applied Linguistics Supervisor of the doctoral thesis: prof. RNDr. Jan Hajič, Dr., Institute of Formal and Applied Linguistics Abstract: Czech named entity recognition (the task of automatic identification and classification of proper names in text, such as names of people, locations and organizations) has become a well-established field since the publication of the Czech Named Entity Corpus (CNEC). This doctoral thesis presents the author's research of named entity recognition, mainly in the Czech language. It presents work and research carried out during CNEC publication and its evaluation. It fur- ther envelops the author's research results, which improved Czech state-of-the-art results in named entity recognition in recent years, with special focus on artificial neural network based solutions. Starting with a simple feed-forward neural net- work with softmax output layer, with a standard set of classification features for the task, the thesis presents methodology and results, which were later used in open-source software solution for named entity recognition, NameTag. The thesis finalizes with a recurrent neural network based recognizer with word embeddings and character-level word embeddings,...
|
13 |
Extrakce strukturovaných dat z českého webu s využitím extrakčních ontologií / Extracting Structured Data from Czech Web Using Extraction OntologiesPouzar, Aleš January 2012 (has links)
The presented thesis deals with the task of automatic information extraction from HTML documents for two selected domains. Laptop offers are extracted from e-shops and free-published job offerings are extracted from company sites. The extraction process outputs structured data of high granularity grouped into data records, in which corresponding semantic label is assigned to each data item. The task was performed using the extraction system Ex, which combines two approaches: manually written rules and supervised machine learning algorithms. Due to the expert knowledge in the form of extraction rules the lack of training data could be overcome. The rules are independent of the specific formatting structure so that one extraction model could be used for heterogeneous set of documents. The achieved success of the extraction process in the case of laptop offers showed that extraction ontology describing one or a few product types could be combined with wrapper induction methods to automatically extract all product type offers on a web scale with minimum human effort.
|
14 |
Komponent pro sémantické obohacení / Semantic Enrichment ComponentDoležal, Jan January 2018 (has links)
This master's thesis describes Semantic Enrichment Component (SEC), that searches entities (e.g., persons or places) in the input text document and returns information about them. The goals of this component are to create a single interface for named entity recognition tools, to enable parallel document processing, to save memory while using the knowledge base, and to speed up access to its content. To achieve these goals, the output of the named entity recognition tools in the text was specified, the tool for storing the preprocessed knowledge base into the shared memory was implemented, and the client-server scheme was used to create the component.
|
15 |
Analýza a získávání informací ze souboru dokumentů spojených do jednoho celku / Analysis and Data Extraction from a Set of Documents Merged TogetherJarolím, Jordán January 2018 (has links)
This thesis deals with mining of relevant information from documents and automatic splitting of multiple documents merged together. Moreover, it describes the design and implementation of software for data mining from documents and for automatic splitting of multiple documents. Methods for acquiring textual data from scanned documents, named entity recognition, document clustering, their supportive algorithms and metrics for automatic splitting of documents are described in this thesis. Furthermore, an algorithm of implemented software is explained and tools and techniques used by this software are described. Lastly, the success rate of the implemented software is evaluated. In conclusion, possible extensions and further development of this thesis are discussed at the end.
|
Page generated in 0.0392 seconds