• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mathematical Modelling of Entrained Flow Coal Gasification

Beath, Andrew Charles January 1996 (has links)
A mathematical model for entrained flow coal gasification was developed with the objective of predicting the influence of coal properties and gasification conditions on the performance of entrained flow gasifiers operating at pressures up to 21 atmospheres (2.1MPa). The model represents gasifiers as plug flow reactors and therefore neglects any mixing or turbulence effects. Coal properties were predicted through use of correlations from a variety of literature sources and others that were developed from experimental data in the literature. A sensitivity analysis of the model indicated that errors in the calculated values of coal volatile yield, carbon dioxide gasification reactivity and steam gasification may significantly affect the model predictions. Similarly errors in the input values for gasifier wall temperatures and gasifier diameter, when affected by slagging, can cause model prediction errors. Model predictions were compared with experimental gasification results for a range of atmospheric and high pressure gasifiers, the majority of the results being obtained by CSIRO at atmospheric pressure for a range of coals. Predictions were accurate for the majority of atmospheric pressure results over a large range of gas feed mixtures. Due to the limited range of experimental data available for high pressure gasification the capability of the model is somewhat uncertain, although the model provided accurate predictions for the majority of the available results. The model was also used to predict the trends in particle reactions with gasification and the influence of pressure, gasifier diameter and feed coal on gasifier performance. Further research on coal volatile yields, gasification reactivities and gas properties at high temperatures and pressures was recommended to improve the accuracy of model inputs. Additional predictions and model accuracy improvements could be made by extending the model to include fluid dynamics and slag layer modelling. / PhD Doctorate

Page generated in 0.1432 seconds