• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Envelope Stress Response in Sedimentation-Resistant Escherichia Coli

Shah, Neel K 01 January 2019 (has links)
Previous research discovered the existence of sedimentation-resistant mutants of E. coli. Genomic studies revealed that these mutants resisted sedimentation due to independent modifications to genes that influenced the Rcs signal transduction pathway, causing increased secretion of an exopolysaccharide capsule comprised primarily of colanic acid. The Rcs system is responsible for detecting envelope stressors; consequently, ampicillin and osmotic stress were used to perturb the cellular envelope and study the response of the mutants compared to wild-type cells. It was found that the overproduction of colanic acid in the mutants confers some resistance to envelope stress; however, the mutants still behaved similarly to wild-type cells. The doubling times of the strains grown in sodium chloride solutions were calculated. A wavelength scan from 400 nm to 800 nm was performed on strains grown in different salt concentrations to determine if there were significant differences in light scattering between the wild-type and mutant cells. Further analysis was performed that, along with the doubling time data, suggested that wild-type cells may have turned on genes for capsule production in response to being grown in high salt concentrations. Additional research could be conducted to test this hypothesis, perhaps through the quantification of colanic acid through a methyl pentose assay for wild-type cultures grown with high salt concentrations. The idea that wild-type cells could digest colanic acid as a carbon source when lacking resources was also investigated with different preparations of colanic acid. One preparation of colanic acid showed promising results, which could indicate that bacteria are able to digest their capsule in a novel method to produce energy when starved. Again, additional investigation should be conducted to confirm these results. Other future experiments could study the metabolome of these mutants to determine if they have increased quantities of alarmones related to biofilm formation.
2

Phyletic Distribution and Diversification of the Phage Shock Protein Stress Response System in Bacteria and Archaea

Popp, Philipp F, Gumerov, Vadim M., Andrianova, Ekaterina P., Bewersdorf, Lisa, Mascher, Thorsten, Zhulin, Igor B., Wolf, Diana 19 March 2024 (has links)
Maintaining cell envelope integrity is of vital importance for all microorganisms. Not surprisingly, evolution has shaped conserved protein protection networks that connect stress perception, transmembrane signal transduction, and mediation of cellular responses upon cell envelope stress. The phage shock protein (Psp) stress response is one such conserved protection network. Most knowledge about the Psp response derives from studies in the Gram-negative model bacterium Escherichia coli, where the Psp system consists of several well-defined protein components. Homologous systems were identified in representatives of the Proteobacteria, Actinobacteria, and Firmicutes. However, the Psp system distribution in the microbial world remains largely unknown. By carrying out a large-scale, unbiased comparative genomics analysis, we found components of the Psp system in many bacterial and archaeal phyla and describe that the predicted Psp systems deviate dramatically from the known prototypes. The core proteins PspA and PspC have been integrated into various (often phylum-specifically) conserved protein networks during evolution. Based on protein domain-based and gene neighborhood analyses of pspA and pspC homologs, we built a natural classification system for Psp networks in bacteria and archaea. We validate our approach by performing a comprehensive in vivo protein interaction study of Psp domains identified in the Gram-positive model organism Bacillus subtilis and found a strong interconnected protein network. Our study highlights the diversity of Psp domain organizations and potentially diverse functions across the plethora of the microbial landscape, thus laying the ground for studies beyond known Psp functions in underrepresented organisms.
3

Synthesis and mechanism-of-action of a novel synthetic antibiotic based on a dendritic system with bow-tie topology

Revilla-Guarinos, Ainhoa, Popp, Philipp F., Dürr, Franziska, Lozano-Cruz, Tania, Hartig, Johanna, de la Mata, Francisco Javier, Gómez, Rafael, Mascher, Thorsten 21 May 2024 (has links)
Over the course of the last decades, the continuous exposure of bacteria to antibiotics—at least in parts due to misprescription, misuse, and misdosing—has led to the widespread development of antimicrobial resistances. This development poses a threat to the available medication in losing their effectiveness in treating bacterial infections. On the drug development side, only minor advances have been made to bring forward novel therapeutics. In addition to increasing the efforts and approaches of tapping the natural sources of new antibiotics, synthetic approaches to developing novel antimicrobials are being pursued. In this study, BDTL049 was rationally designed using knowledge based on the properties of natural antibiotics. BDTL049 is a carbosilane dendritic system with bow-tie type topology, which has antimicrobial activity at concentrations comparable to clinically established natural antibiotics. In this report, we describe its mechanism of action on the Gram-positive model organism Bacillus subtilis. Exposure to BDTL049 resulted in a complex transcriptional response, which pointed toward disturbance of the cell envelope homeostasis accompanied by disruption of other central cellular processes of bacterial metabolism as the primary targets of BDTL049 treatment. By applying a combination of whole-cell biosensors, molecular staining, and voltage sensitive dyes, we demonstrate that the mode of action of BDTL049 comprises membrane depolarization concomitant with pore formation. As a result, this new molecule kills Gram-positive bacteria within minutes. Since BDTL049 attacks bacterial cells at different targets simultaneously, this might decrease the chances for the development of bacterial resistances, thereby making it a promising candidate for a future antimicrobial agent.

Page generated in 0.1064 seconds