• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and Implementation of Affordable, Self-Documenting, Near-Real-Time Geospatial Sensor Webs for Environmental Monitoring using International Standards

Rettig, Andrew J. January 2014 (has links)
No description available.
2

Fully Integrated Electrochemical Sensor Based on Surface Activated Copper/Polymer Bonding for Lead Detection

Redhwan, Md Taufique Zaman 11 1900 (has links)
Lead (Pb) levels in tap water below the established water safety guideline are now considered harmful, thus detecting sub-parts-per-billion level Pb is important. This thesis reports on a miniaturized Copper (Cu)−based electrochemical sensor fabricated from thick film electrodes for their superior sensing performance. These thick film electrodes are based on highly conductive rolled-annealed Cu foil that has a compact bulk structure, but these advantages are often offset by the fact that RA Cu foil is difficult to bond to a substrate due to poor film-adhesion property and lack of mechanical interlocks. For this reason, we develop a direct bonding process for Cu/polymer. An integrated three-electrode planar configuration is then fabricated on the bonded specimen to achieve a fully-functional sensor that can detect 0.2 μg/L (0.2 ppb) Pb2+ ions from a 100 μL sample in only 30 s. This is the most rapid detection of Pb featured to date by an all Cu-based sensor. This thesis first focuses on improving substrate adhesion of RA Cu foil to liquid crystal polymer (LCP). This is achieved by a surface activated bonding process where Cu and LCP surfaces are treated with low-power reactive ion etching oxygen plasma followed by low-pressure contact at 230 °C. This treatment produces hydroxyl (OH−) groups on Cu and LCP surfaces making them highly hydrophilic. When Cu and LCP are contacted and heated, the OH− chains condense by dehydration and form an intermediate oxide layer. This layer mainly develops as Cu2O nanoparticles from the plasma-treated Cu side due to thermal oxidation in air. These nanoparticles diffuse into the polymer substrate when heated under mechanical pressure, resulting in a strongly bonded flexible specimen for the sensor. A simple, inexpensive, and production-friendly fabrication process is then developed for these sensors. Following direct bonding, flexible Cu/LCP is fed into a LaserJet printer for a one-step transfer of polyester resin−based electrode mask on Cu. This is followed by etching, packaging, and a chlorinating process to achieve a fully-functional integrated sensor. The sensing performance of directly bonded Cu/LCP is comparable to that of commercially available Cu/polyimide (PI) laminate. Our approach holds promise towards realizing low-cost integrated water quality monitoring systems. / Thesis / Master of Applied Science (MASc) / Lead contamination in tap water has major health risks for which monitoring of its levels is important. In this thesis, we develop a low-cost copper/polymer-based lead sensor. The sensor is fabricated from high-quality metal foil electrodes that are integrated to a polymer substrate by a direct bonding process. This enables strong adhesion of foil-based electrodes to the substrate that is crucial to the sensor performance and packaging integrity. We investigate the bonding mechanism between copper and polymer to understand the fundamentals of materials integration. These findings will lead to the development of polymer-based sensors and integrated systems. The bonded sensor bases are mechanically flexible, which facilitates a rapid and low-cost fabrication process using a laser printer. The developed sensor has a fast response time (30 s) and can detect very low levels of lead, thus making it suitable for water quality monitoring applications in under-developed and developed countries with legacy water systems that have not been upgraded yet.
3

Comparison of Winter Temperature Profiles in Asphalt and Concrete Pavements

Dye, Jeremy Brooks 12 August 2010 (has links) (PDF)
Because winter maintenance is so costly, Utah Department of Transportation (UDOT) personnel asked researchers at Brigham Young University to determine whether asphalt or concrete pavements require more winter maintenance. Differing thermal properties suggest that, for the same environmental conditions, asphalt and concrete pavements will have different temperature profiles. Climatological data from 22 environmental sensor stations (ESSs) near asphalt roads and nine ESSs near concrete roads were used to 1) determine which pavement type has higher surface temperatures in winter and 2) compare the subsurface temperatures under asphalt and concrete pavements to determine the pavement type below which more freeze-thaw cycles of the underlying soil occur. Twelve continuous months of climatological data, primarily from the 2009 calendar year, were acquired from the road weather information system operated by UDOT, and erroneous data were removed from the data set. To predict pavement surface temperature, a multiple linear regression was performed with input parameters of pavement type, time period, and air temperature. Similarly, a multiple linear regression was performed to predict the number of subsurface freeze-thaw cycles, based on month, latitude, elevation, and pavement type. A finite-difference model was created to model surface temperatures of asphalt and concrete pavements based on air temperature and incoming radiation. The statistical analysis predicting pavement surface temperatures showed that, for near-freezing conditions, asphalt is better in the afternoon, and concrete is better for other times of the day, but that neither pavement type is better, on average. Asphalt and concrete are equally likely to collect snow or ice on their surfaces, and both pavements are expected to require equal amounts of winter maintenance, on average. Finite-difference analysis results confirmed that, for times of low incident radiation (night), concrete reaches higher temperatures than asphalt, and for times of high incident radiation (day), asphalt reaches higher temperatures than concrete. The regression equation predicting the number of subsurface freeze-thaw cycles provided estimates that did not correlate well with measured values. Consequently, an entirely different analysis must be conducted with different input variables. Data that were not available for this research but are likely necessary in estimating the number of freeze-thaw cycles under the pavement include pavement layer thicknesses, layer types, and layer moisture contents.

Page generated in 0.0762 seconds