Spelling suggestions: "subject:"environmental"" "subject:"environmental's""
1111 |
Improving Air Pollution Exposure Estimation Using Cell Phone Location Data and Low-cost SensorsYu, Xiaonan 01 January 2020 (has links)
Human exposure estimation to air pollution plays an important role in epidemiological studies which are designed to reveal correlations between human exposures to certain air pollutants and certain diseases, such as asthma, cardiovascular disease and reproductive diseases. Traditionally, when people's mobile data is hard to get, home location is used to estimate people's exposures assuming that people stay at home all the time. Whereas, people move and it is more accurate to estimate people's exposures including people's mobility. In our study, we showcased two methods to obtain people's mobile data: Google Maps location history (GMLH) data and Call Detailed Record (CDR) data. GMLH data was compared with Global Positioning System (GPS) data from four aspects: 1) spatial movement of the subject; 2) time the subject spent at different microenvironments; 3) time the subject spent on driving; 4) subject's time-weighted exposures to ambient particulate matter. The results showed that compared with GPS data, GMLH data capture well the subject's spatial mobility with resolution of 200m * 200m or larger and successfully captured the time the subject spent at different microenvironments and the time on driving. Also, with GMLH data we were able to accurately estimate the subject's time-weighted exposure to ambient PM pollution. CDR data was used to estimate subjects' mobile exposures for five chosen pollutants (CO, NO2, SO2, O3, and PM2.5). And the correlation between difference between static exposures and mobile exposures with mobility level is also investigated. My study revealed that there is no substantial difference between home based exposure (HBE) and CDR based exposure (CDRE) at population level. But at individual level, difference between HBE and CDRE increased with mobility increased. It was also found that HBE would likely under-estimate exposure to traffic-related pollutants (CO, NO2 and PM2.5) during afternoon rush-hour, but over-estimate exposures to ozone during mid-afternoon. As smartphone and Google Maps application are used widely, these two methods have huge potential on obtaining people's mobility data. My study also tested the relative accuracy and reliability of two brand commercial sensors (PurpleAir and Dylos). Results showed that PurpleAir has good relative accuracy and reliability, while Dylos has moderate relative accuracy and reliability.
|
1112 |
Evaluating Hydrologic Fluxes Through Stormwater Treatment Systems: Implication to Freshwater Springs in a Karst EnvironmentRice, Nyle 01 January 2018 (has links)
In recent years, concentrations of nutrients such as nitrogen and phosphorus have increased in surface and groundwater resources, due in part to non-point source pollution associated with stormwater runoff. The elevated nutrient concentrations found in stormwater runoff have prompted the design of best management practices (BMP's) to mitigate the problem. The overall objective within this thesis is to analyze the performance of innovative surface BMPs and investigate connections between the BMPs and groundwater flows to freshwater springs within a karst environment. The performance of two stormwater BMPs, blanket filters and vertical reactors containing Bio-sorption Activated Media (BAM), are assessed in terms of hydraulic retention time. Capture efficiency is also evaluated for the blanket filters. Blanket filters captured, at minimum 68% of the stormwater runoff entering a stormwater basin in one year. Water content monitoring indicates that BAM is affected by the surrounding water table. The vertical reactors are more appropriate technologies for small contributing areas. Tracking a conservative tracer from an injection point within a stormwater basin to nearby Silver Springs reveals several unique flowpaths and velocities of groundwater. Subsurface velocities observed in the basin ranged from 0.1 m/d to 1.4 m/d, while velocities from the injection well to the spring vary from 2.3 m/d to 13.5 m/d. The fastest travel times observed in the spring may represent flowpaths that include macropore/conduit flow through karst features, while the slower peaks may be more representative of matrix flow. Interaction with karst features may reduce retention time of stormwater in aquifers, altering expected nutrient transformations. Understanding the variable pathways stormwater may take from the surface to spring discharge may assist environmental managers in preserving water quality in springs and other waterbodies in karst systems.
|
1113 |
Assessing the Impact of Radionuclides Released into the Floridan Aquifer by a Massive Sinkhole on Local Municipal Water SuppliesArenas Daza, Maria 01 January 2018 (has links)
In late August 2016, a sinkhole spanning 45 feet (13.7 meters) in diameter opened at a phosphate fertilizer facility (Mosaic Company) near Mulberry, Florida, leaking an estimated 215 million gallons (813,000 cubic meters) of radionuclide-contaminated water 300 feet into the Floridan aquifer. An investigation to determine possible impacts to the environment and local community drinking water supplies was implemented that focused on two 1.5 million gallon per day (MGD) Tampa Bay Water (TBW) production wells and two Polk County Utilities (PCU) water treatment facilities. Water samples collected between June 2017 and January 2018 at the TBW and PCU sites were found to contain radionuclides below regulated levels. To evaluate the effectiveness of membrane treatment should the TBW and PCU drinking water wells be affected by the spill in the future, bench-scale, flat-sheet reverse osmosis (RO) and nanofiltration (NF) membrane process testing was performed using TBW and PCU wellfield sample aliquots. NF and RO were shown to be capable of removing at minimum of 86 and 92 percent, respectively, of the barium content that had been spiked into groundwater testing aliquots. Based on testing results, a conceptual opinion of probable capital cost for a membrane process ranged from $1.7 and $3.5 million for a 0.25 MGD and 2.0 MGD design capacity, respectively. Process operation and maintenance costs ranged between $0.99/Kgal and $0.26/Kgal for a 0.25 MGD and 2.0 MGD design capacity, respectively. The amortized total cost based on a 20-year period and 8 percent interest rate ranged between $1.88/Kgal for a 0.25 MGD and $0.49/Kgal for a 2.0 MGD design capacity plant. An estimate of unavailable water value due to a long-term well shut-down was approximated as $0.64/Kgal.
|
1114 |
Investigating Novel Water Treatment Methods and Monitoring Techniques for Sulfide-Laden Groundwater SuppliesYoakum, Benjamin 01 January 2017 (has links)
This dissertation reports on research related to novel water treatment and monitoring techniques for sulfide-laden groundwater supplies. The dissertation is divided into several chapters with four core chapters focused on investigations studying a novel water treatment method or monitoring technique. The first investigation assessed the efficacy of multi-pass spray aeration treatment to remove trihalomethanes (THMs) and to reduce the total THM formation potential (TTHMFP) of an aerated water column post-aeration. A recirculating spray aeration pilot unit was constructed to make this assessment. To assess the effect of multi-pass spray aeration on the TTHMFP, water was recirculated through a fabricated spray nozzle for various lengths of time. Results showed that multi-pass spray aeration can remove chloroform, dichlorobromomethane, dibromochloromethane and bromoform to below detection levels ( < 0.7 ppb) for the waters investigated. Additionally, spray aeration reduced the TTHMFP of chlorinated water. Results suggest multi-pass spray aeration may be a viable treatment option for some bromide container waters. Results also indicate that multi-pass spray aeration removes bromide from the bulk water in the form of organically bound volatile compounds. The second investigation assessed the efficacy of using pre-existing tray aeration infrastructure to comply with disinfection by-product (DBP) regulations. To assess the efficacy of tray aerators to reduce the concentration TTHMs a pilot tray aerator was constructed. Results showed that after five tray passes (each pass consisting of water being passed over five trays) the concentration of TTHMs was below the detection limit ( < 0.7 ppb) for the water investigated. To assess the efficacy of tray aeration at full-scale, a water treatment plant and the distribution system it serves were monitored for eight months. Results showed an approximate 40 ppb reduction in the TTHM concentration at two on-site monitoring locations and the one off-site monitoring location (initial concentrations being approximately 54 ppb, 60 ppb and 73 ppb, respectively). Results suggest that the utility managing the full-scale system could comply with DBP regulations by using the pre-existing tray aeration infrastructure to reduce formed THMs on-site where regulated haloacetic acids are not predominant. The third investigation assessed the efficacy of using biological activated carbon (BAC) to remove disinfection by-product precursor matter to comply with DBP regulations. To research this method, a pilot scale BAC filter was operated for three independent test runs. In addition, two full-scale WTPs using BAC were monitored over time. Results showed an approximate 40 percent removal of dissolved organic carbon (DOC) during the three pilot runs and an approximate 55 percent removal of DOC during full-scale monitoring. Results showed that the reduction in DOC reduced the TTHMFP of BAC treated water. Results suggest that BAC treatment could be a viable treatment option to comply with DBP regulations in the sulfide-laden water studied. The fourth investigation assessed the suitability of oxidation reduction potential (ORP) to monitor the effectiveness of an oxidizing media filter used to remove sulfur from a sulfide-laden groundwater. Results showed that ORP was more useful as a measurement technique as compared to free chlorine residual when assessing filter bed health and regeneration effectiveness. It was determined that when the ORP measurement taken from within the oxidative media layer was below 500 mV, the filter bed was not providing treatment, and manganese could be released. Results showed a significant increase in turbidity ( > 2 NTU) and total manganese ( > 0.05 mg/L) occurred when the ORP within the filter bed dropped below 400 mV. More frequent cycling of the filters was found to be an effective treatment option to maintain ORP values above an identified 400 mV operational threshold.
|
1115 |
Disinfection By-Product Reduction Study of a Small Central Florida Public Water SystemStaubus, Paul 01 January 2018 (has links)
The disinfection of water for potabilization has proven to be one of the most significant public achievements of the 20th century. Although chemical disinfectants are successfully utilized to inactivate acute pathogenic organisms, they may react with natural organic matter (NOM) to produce potentially-harmful disinfection by-products (DBPs). As a result, the United States Environmental Protection Agency regulates DBPs such as total trihalomethanes (TTHMs) and haloacetic acids (HAAs). The research herein is focused on the formation, removal, and control of TTHMs and HAAs in a small public water system (PWS) in Polk County, Florida (County). Pilot-scale tests were implemented to determine the efficacy of stripping TTHMs using single-pass spray and recirculating tray aeration systems, both operating at flows of 3 gallons per minute. In the spray aerator evaluation, an average TTHM reduction of 29.5% was recorded. With tray aeration, a 46.7% reduction of TTHMs was observed after a single pass through the assembly. The benefits of additional recirculation appeared to decrease significantly after four passes, at a TTHM removal of 85.5%. A raw water blending effort was conducted to model bypass around granular activated carbon (GAC) adsorption vessels. The results demonstrated the feasibility of a 50% blend in full-scale treatment operations. With this blend, chlorine residuals and HAA concentrations were able to be controlled throughout 48 hours of incubation at 30°C. From the data collected, a water quality plan was developed for the County's Waverly PWS. The plan to control the formation of DBPs integrated a recirculating tray aeration process for TTHM stripping complemented with GAC adsorption process for removing DBP precursors. The estimated conceptual operating cost was approximated at $24,000 annually. This cost considered carbon replacement as well as the recirculation pump operation. If the recommended 50% GAC bypass is applied, the conceptual operating cost reduces to approximately $15,250 annually.
|
1116 |
Treatment of Leachate Organic Matter through Sunlight Driven ProcessesLozinski, Duncan 01 January 2018 (has links)
The ability to manage leachate during post-closure care (PCC) of a landfill may be increasingly difficult as leachate organic matter (LOM) becomes recalcitrant when a landfill ages, requiring advanced and costly treatment technologies. This research investigated the ability to treat LOM through sunlight driven processes, with a focus on photolysis, to provide insight to landfill owners and operators on the potential of wetlands treatment as a means for reducing long-term risks and costs associated with leachate treatment during PCC. The study was completed in eight batch tests, where leachate was exposed to natural sunlight in central Florida for a period of 90 days. It was hypothesized that through photolytic reactions, in particular photolysis, high molecular weight recalcitrant LOM would be degraded to labile, low molecular weight material. To identify the treatment mechanisms, transformation processes were measured using ultraviolet-visible (UV-Vis) spectroscopy, fluorescence excitation-emission matrix spectroscopy (EEMs), size-exclusion chromatography (SEC), and chemical oxygen demand (COD) from the beginning to the end of the test period. Additionally, the ability for nitrogen species to become bioavailable when exposed to sunlight was evaluated for two of the leachate samples using solid-phase extraction (SPE) to fractionate recalcitrant dissolved organic nitrogen (rDON) and bioavailable dissolved organic nitrogen (bDON). Results suggest that treatment of LOM through sunlight driven processes is possible. Treatment is dependent upon the dilution of leachate and characteristics of the LOM. Dilution must be high enough to allow sunlight to penetrate the depth of the liquid. UV-Vis, EEMs, and SEC show that high molecular weight recalcitrant material is undergoing transformation into lower molecular weight material as a result of photolytic and likely biological reactions promoted by sunlight. The ability for nitrogen to become bioavailable when exposed to sunlight was shown to be dependent upon nitrogen concentrations in the sample.
|
1117 |
Cost and Environmental Impacts of Leachate Nitrogen/Phosphorus Management ApproachesAlanezi, Alaa 01 January 2018 (has links)
Landfill leachate is a challenging wastewater to discharge into municipal wastewater treatment plants (WWTPs), the most common approach for leachate management, due to the presence of contaminants that may affect the performance of the treatment plant. Treatment, disposal, and transportation of leachate are expensive and therefore a concern. Currently, sidestream treatment is becoming increasingly common in WWTPs prior to returning the liquid to the plant influent. For this research, a new treatment scheme is introduced combining centrate and leachate to reduce contaminants, recover phosphorous and nitrogen through struvite precipitation, and reduce energy requirements through anaerobic ammonium oxidation (Anammox). By combining the two waste streams, the respective limited nutrients (nitrogen in centrate and nitrogen in leachate) can be removed in a low cost chemical treatment resources can be recovered. Carbon contaminants and remaining nutrients can be removed in subsequent innovative biological treatment units. The objective of this thesis is to conduct a cost analysis and environmental assessment of the proposed novel treatment approach and to compare it to more traditional landfill on-site leachate treatment approaches (e.g., membrane bioreactors (MBR) and sequencing batch reactors (SBR)). The study was completed with the use of spreadsheet-based models. Spreadsheets have been developed to evaluate treatment costs (Capital + O&M) for both the proposed nutrient recovery/biological and traditional on-site leachate treatments. Transportation costs of leachate to the WWTP have been studied and analyzed by the use of a spreadsheet model as a function of distance. Results suggest that treatment using Struvite – Aerobic Granular Sludge – Anammox (SGA) was higher in cost compared to traditional approaches. However, positive outcomes from this process include: lower N_2 O emissions, lower power consumption, struvite fertilizer, and overall recovery of nitrogen and phosphorus with the combination of centrate and leachate.
|
1118 |
Optimal Recipe Screening and Applications of Iron-Filings Based Green Environmental Media (IFGEM) For Stormwater TreatmentValencia, Andrea 01 January 2019 (has links)
The applications of green sorption media for stormwater treatment and nutrient removal benefit surface and ground water bodies by reducing non-point source pollution from stormwater runoff. To enhance nitrogen and phosphorus removal, a sequential study was performed to develop an improved green sorption media in this study by including the iron filings into the previous biosorption activated media (BAM). The iron-filings-based green environmental media (IFGEM) are thus composed of sand, tire crumb, clay and ground iron filings in which clay and iron particles are supposed to have salient interactions that cannot be present in BAM. However, the optimal ratio between clay and iron-filings remains unknown. The innovative media recipe was determined from a suite of sequential clay and iron filing contents variations by fixed-bed column testing seven IFGEM recipes with varied clay and iron filing aggregates. The optimal IFGEM recipe (IFGEM-3) was initially determined from the nutrient removal efficiency at three influent conditions obtained from spiked distilled water with three levels of phosphate (0.3, 0.5, 0.7 mg/L) and nitrate (0.9, 1.3, 1.7 mg/L) concentrations designed to mimic in-situ stormwater conditions. The nutrient removal and recovery potential with respect to varying physical and chemical properties of IFGEM were further investigated by response surface method (RSM). Response surface method was later employed to identify the optimal or intelligent IFGEM recipe from simulated nutrient removal results based on the seven IFGEM recipes. The RSM encompassed the modeling of the response surface of three responses (total nitrogen, total phosphorus, and ammonia removal) in relation to clay and iron filing contents. Lastly, to validate the efficacy of the real-world applications, a fixed-bed column study was performed to explore the biological and physicochemical characteristics of IFGEM-3 for nutrient removal in stormwater treatment. The nutrient removals and interactions of microbial population dynamics were analyzed for natural soil, BAM, and two IFGEMs (IFGEM-1 and IFGEM-3) simultaneously for final validation of this bioengineering technology. Results indicate that IFGEM has a great potential to achieve the essential removal of nutrients for stormwater runoff.
|
1119 |
Development and Application of Microelectrodes to Study in situ Disinfectant Loss and Corrosion on Metal SurfaceMa, Xiangmeng 01 January 2017 (has links)
The primary objective of this research was to develop, fabricate, evaluate and utilize microelectrodes to metal coupons in artificial water system. In the brass experiment, it presented profiles of direct measurements of free chlorine/monochloramine, oxygen and pH to brass and cement based coupons. In monochloraminated water, brass showed a much faster corrosion process under observation. Profiles showed a less monochloramine consumption with as high as 7% greater oxygen utilization comparing to the brass in free chlorine solution, reflecting oxygen could be a major part of the corrosion initiation process. While cement showed less reactive characteristics to disinfectants and oxygen compared to the brass profiles, however, pH showed a significant rise for cement coupon under monochloramine condition. In galvanic experiment, the developed lead micro-ISE (100 µm tip diameter) showed excellent performance toward soluble lead (Pb2+) with the sensitivity of 22.2 ± 0.5 mV decade-1 and limit of detection (LOD) of 1.22×10-6 M (0.25 mg L-1). The response time was less than 10 seconds with a working pH range of 2.0 – 7.0. Using the lead micro-ISE, lead concentration microprofiles were measured from the bulk to the metal surface over time. Combined with two-dimensional (2D) pH map, this work clearly demonstrated that lead leaching at the metal surface is non-uniform and lower surface pH leads to higher lead leaching from the surface. Once significant pH variation (ΔpH: 6.0) was developed across brass-lead joint coupon, even a small pH change (ΔpH: 0.6) within the Pb/Sn alloy resulted in 4 times different surface lead concentrations (42.93 vs. 11.61 mg L-1) and 5 times different fluxes (18.5×10-6 vs. 3.5×10-6 mg cm-2s-1). Continuous surface lead leaching monitoring and surface characterization found that free chlorine is the primary contributor to lead leaching.
|
1120 |
Use of Accelerated Calcite Precipitation Method to Investigate Calcium Carbonate Precipitation from Recycled Concrete for Drainage System ApplicationsCurate, Toni 01 January 2018 (has links)
Recycled concrete aggregate (RCA) is a sustainable construction material that is a viable option for use in drainage systems by replacing virgin aggregate. Replacing virgin aggregate with RCA is beneficial from both economic and environmental perspectives. However, the use of RCA as pipe backfill materials may cause a long-term performance issue such as potential clogging due to fines accumulation and calcite precipitation on filter fabric. Previous studies investigated the long-term performance of RCA regarding flow rate. Therefore, this study investigated calcite precipitation potential of RCA. The Accelerated Calcite Precipitation (ACP) procedure was devised and used to estimate "life-time" calcite precipitation of RCA for French Drains. The ACP procedure was studied further and improved to optimize the calcite precipitation procedure. The enhanced method was used to compare the calcite precipitation of limestone and RCA samples - sources with varying chemistry and history. Key findings are (1) the clogging due to calcite precipitation of RCA is not as significant as clogging due to the existing and/or accumulated fines, (2) the calcite precipitation can be increased with a temperature of 75°C and 17-hour heating time, and (3) the potential for calcite precipitation from RCA is not as significant as limestone for Type I underdrain gradation.
|
Page generated in 0.0675 seconds