Spelling suggestions: "subject:"enzymatic biosensor""
1 |
Biossensores EnzimÃticos para DetecÃÃo e QuantificaÃÃo de Carbamatos em Amostras de Alimentos. / Enzymatic Biosensors for the Detection and Quantification of Carbamates in Food SamplesThiago Mielle Brito Ferreira Oliveira 10 December 2013 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Este trabalho contempla trÃs estratÃgias para o biossensoriamento de pesticidas da classe dos carbamatos (CBM) em alimentos naturais, utilizando biossensores à base de polifenoloxidases como dispositivos analÃticos: (i) eletrodo de pasta de nanotubos de carbono (EPNC) modificado com lacase de Tramites versicolor (LAC) por entrapment da enzima diretamente no material compÃsito, definido como LAC-EPNC; (ii) eletrodo de pasta de grafeno (EPG) modificado com filmes de Azul da PrÃssia (AP), seguido da imobilizaÃÃo de LAC por drop coating, definido como LAC/AP/EPG; e (iii) EPG modificado por eletrodeposiÃÃo de filme hÃbrido composto por quitosana (CS), nanopartÃculas de ouro (NpAu) e mistura das enzimas LAC e tirosinase de Agaricus bisporus (TIR), definido como LAC-TIR-NpAu-CS/EPG. Tomado por base o processo redox do substrato 4-aminofenol (4-AMF), a presenÃa dos nanotubos de carbono e do grafeno proporcionou uma sÃrie de vantagens aos dispositivos, a saber: aumento nos valores de corrente de pico, catÃlise do processo redox, melhoria na reversibilidade e, consequentemente, na cinÃtica de transferÃncia eletrÃnica. Filmes de AP (imobilizaÃÃo direta da enzima sem a necessidade de regente para cross-linking), CS (biocompatibilidade adequada, maior imobilizaÃÃo e fixaÃÃo das enzimas) e NpAu (reduÃÃo da resistÃncia a transferÃncia de carga) tambÃm apresentaram importante papel na configuraÃÃo eletrÃdica dos biossensores. As curvas analÃticas foram construÃdas por voltametria de onda quadrada, baseando-se na capacidade dos CBM (carbofurano, carbaril, formetanato, pirimicarbe, propoxur e ziram) de inibir a atividade das polifenoloxidases. Em geral, os procedimentos propostos apresentaram sensibilidade (limites de detecÃÃo variando de 0,001 a 0,093 mg kg-1) que contempla os limites mÃximos estabelecidos pelas agÃncias de seguranÃa e controle alimentar brasileira e europeia para resÃduos de CBM em hortaliÃas (tomate, alface e batata) e frutas cÃtricas (laranja, tangerina e limÃo), com baixo nÃvel de interferentes. Os ensaios de recuperaÃÃo foram realizados em extratos QuEChERS das amostras, com porcentagens de recuperaÃÃo variando de 91,0  0,1% a 101,10  0,1%; para contaminaÃÃes de 0,01 a 3,14 mg kg-1. Portanto, LAC-EPNC, LAC/AP/EPG e LAC-TIR-NpAu-CS/EPG podem ser ferramentas promissoras na anÃlise de CBM em matrizes alimentares. / This work contemplates three strategies for carbamate pesticides (CBM) biosensing in natural food, using polyphenoloxidases based biosensors as analytical device: (i) carbon nanotubes paste electrode (CNPE) modified with laccase from Tramites versicolor (LACC), namely as LACC-CNPE; (ii) graphene paste electrode (GPE) modified with Prussian Blue films (PB), followed by the LACC immobilization by drop coating, namely as LACC/PB/GPE; and (iii) GPE modified by the electrodeposition of a hybrid film composed for chitosan (CS), gold nanoparticles (AuNp) and a mixing of LACC and tyrosinase from Agaricus bisposrus (TYR), namely as LACC-TYR-AuNp-CS/GPE. Based on 4-aminophenol (4-AMP) redox process, the presence of carbon nanotubes and graphene allowed several advantages to the devices, such as: increase of the peak currents values, catalysis of the redox process, improvement of the reversibility and electronic-transfer kinetic. PB films (direct enzymatic immobilization without cross-linking reagent), CS (suitable biocompatibility, higher immobilization and fixation of the enzymes) and AuNp (reduction of the charge-transfer resistance) also showed important role on biosensors electrodic configuration. Analytical curves were constructed by square-wave voltammetry, based on CBM (carbofuran, carbaryl, formetanate, pirimicarb, propoxur and ziram) capability to inhibit the polyphenoloxidase activity. In general, the proposed procedures had sensitivity (detection limits ranging from 0.001 to 0.093 mg kg-1) in compliance with the maximum limit established by Brazilian and European food surveillance and control agencies for the analysis of CBM residues in vegetable crops (tomato, lettuce and potato) and citrus fruits (orange, tangerine and lemon), with negligent interfering effect. Recuperation experiments were carried out with QuEChERS extracts of the samples, allowing recuperation values from 91.0  0.1% to 101.1  0.1%; for spiking levels from 0.01 to 3.14 mg kg-1. Thus, LACC-CNPE, LACC/PB/GPE and LACC-TYR-AuNp-CS/GPE are promisor tools for CBM analysis in food matrices.
|
2 |
Amperometric Microbial And Enzymatic Biosensors Based On Conducting PolymersTuncagil, Sevinc 01 April 2010 (has links) (PDF)
In this thesis, six different biosensors based on conducting polymers of poly
4-(2,5-di(thiophen-2-yl)-1H-pyrrole-1-l) benzenamine [poly(SNSNH2)] and poly(1-
(4-nitrophenyl)-2,5-di(2-thienyl)-1H-pyrrole [poly(SNSNO2)] were prepared.
Electrochemical technique was used for polymerization of conducting polymers and
two different immobilization techniques / crosslinking and adsorption were used for
immobilizing enzyme or microbial in the conducting polymer matrices. The
proposed biosensors were characterized and optimized. Optimum pH, thickness of
conducting polymer and biological material amount were determined. Linearity,
repeatability and operational stability experiments were performed. Carbon
nanotubes and gold nanoparticles were also added to the biosensing system to see the
effects of nanoparticles. The biosensors also used for ethanol and/or glucose
biosensing in commercial samples. In the first part of thesis, a biosensor was
designed by immobilizing Gluconobacter oxydans in poly(SNSNH2) matrix on
graphite electrode. The biosensor preparation method was a two-step procedure
where the cells were immobilized by adsorption on the surface after the
electropolymerization step.Use of dialysis membrane to cover the surface after immobilization conserves the
bioactive surface during the operation. The preparation is simple and not time
consuming. Systems proposed showed good linearity and repeatability as well as
high operational stability. Glucose amount in fruit juice, ethanol amount in vodka
and whisky were determined. In the second part of thesis, a second biosensor was
designed with electrochemical polymerization of 1-(4-nitrophenyl)-2,5-di(2-thienyl)-
1H-pyrrole via cyclic voltammetry on graphite electrode. Afterwards, Pseudomonas
fluorescens and Gluconobacter oxydans were immobilized successfully on the
conducting polymer matrix separately. The proposed biosensors showed good linear
range, and repeatability as well as high operational stability. In the third and fourth
parts, gold nanoparticle and carbon nanotube effects were studied on
poly(SNSNH2)/glucose oxidase biosensor, respectively. Covalent binding of glucose
oxidase was achieved to poly(SNSNH2) by the help of glutaraldehyde on the top of
graphite and carbon paste electrodes. Nanoparticle amount and optimum pH were
determined for both biosensors. After analytical characterization, glucose amount in
two fruit juices were determined with poly(SNSNH2)/GOx/AuNP and poly(SNSNH2)/
GOx/CNT biosensors. In the last part, biosensor was designed with immobilizing
alcohol oxidase in poly(SNSNH2) matrix via crosslinking with glutaraldehyde on
platinum electrode. The proposed biosensor was characterized and optimized in
terms of thickness, enzyme loading, pH, AuNPs, CNTs, linear range, repeatability
and operational stability.
|
3 |
Lanthanide Based Hydrogels in Sensing, Energy Transfer and Nanoparticle SynthesisGorai, Tumpa January 2016 (has links) (PDF)
Chapter 1: Luminescence property of lanthanide and its applications
Lanthanides are well-known for their unique luminescence property and have found widespread applications in sensing, bioimaging, lasers, optoelectronic devices, etc. Due to Laporte forbidden f-f transitions, lanthanides have very low intrinsic emission. The problem can be overcome by use of an ‘antenna’, which is an organic chromophore with excited state energy higher than the lanthanides’ emitting levels. Thereby it is possible to get highly emitting lanthanide complexes through energy transfer from the ‘antenna’. Due to long lifetime of lanthanides’ excited states, it's possible to perform time delayed measurement which is useful in bioassays and bioimaging since the short-lived background emission is effectively filtered.
Research in supramolecular metallogels has grown rapidly in recent years, and already proven to have potential for designing advanced materials for a variety of applications, such as sensing, optoelectronics, catalysis, nanoparticle synthesis, biomedicine etc. A supramolecular gel where a lanthanide is an integrated part of it can combine the advantages of the supramolecular gel along with the unique property of lanthanide luminescence and thus such materials can be explored for potential applications. This chapter discusses the background information on the unique luminescence of lanthanides, and some examples of the applications of lanthanide complexes and lanthanide based gels.
Chapter 2: Lanthanide luminescence based enzyme sensing in hydrogels
This chapter describes the use of Tb/Eu luminescence in the sensing of biologically important enzymes. We discovered the sensitization of Eu(III) in Eu-cholate gel by 1-hydroxypyrene, and of Tb(III) in Tb-cholate gel by 2,3-dihydroxynaphthalene. These two sensitizers were covalently modified and sensitizer-appended hybrid (artificial) enzyme substrates were prepared for a few biologically important hydrolases. The covalently modified sensitizer
termed as “pro-sensitizers”, didn't sensitize Tb(III)/Eu(III) in the hydrogel and no photoluminescence was observed. In the presence of the appropriate enzyme in the hydrogel, the pro-sensitizer was cleaved to liberate the sensitizer, which led to an enhancement of luminescence with time. Alkaline phosphatase and β-lactamase were assayed using pyrene phosphate and pyrene-oxo-cephalosporanic acid derivatives, respectively, in Eu-cholate hydrogel (Figure 1). β-Galactosidase was assayed using Tb(III) luminescence in Tb-cholate gel. The enzyme detection was based on red/green luminescence response from the gel. To understand the behaviour of the enzymes in the hydrogel, kinetic parameters were determined. The detection of different enzymes was also demonstrated in natural/biological samples like blood serum, milk and almond extract.
Figure 1. Three different pro-sensitizers used for alkaline phosphatase, β-lactamase and β-galactosidase assays
Chapter 3: Enzyme sensing on paper discs using lanthanide luminescence
Developing a user-friendly biosensor is of considerable importance in clinical and analytical chemistry. Paper based biosensor design is an emerging field of research and paper based point of care (PoC) testing devices have already found applications in clinical, veterinary, environmental, food safety, security etc. Paper is made out of natural cellulose fibres, and has advantages of low cost, biodegradability, biocompatibility, and user friendliness. Paper based sensors have been used for the detection of ions, glucose, proteins, nucleic acids, antigens etc., with mostly colorimetric, fluorescent, electrochemical, chemiluminescence and
Electrochemiluminescence readouts. In this work, the non luminescent Tb(III) and Eu(III) were embedded on paper as their cholate hydrogels and were used for detecting different hydrolases. Pro-sensitizers, as reported in Chapter 2, were immobilized on paper for the detection of a specific enzyme. The “pro-sensitizer” released the sensitizer upon enzyme action and led to luminescence enhancement from the gel coated paper disc. By this way, four different hydrolase enzymes detection were carried out using Tb(III)/Eu(III) luminescence as the readout (Figure 2) and the practical utility was demonstrated by the detection of specific enzymes in natural/biological samples. This paper disc based enzyme sensing provides a simpler and user friendly approach over the contemporary approach of enzyme sensing typically carried out in solution.
Figure 2. Paper based biosensors for hydrolase enzymes
Chapter 4: Luminescence resonance energy transfer in self-assembled supramolecular hydrogels
Luminescence resonance energy transfer is a phenomenon of energy transfer between a FRET (Förster resonance energy transfer) pair, where a lanthanide is the donor. Lanthanides have attracted attention for the last several decades for their unique luminescence properties. LRET is a FRET process along with added advantages of Lanthanides, i.e. long lifetime of
the lanthanides and characteristics emission spectra. LRET has been used for studying interaction of biomacromolecues, immunoassay, bioassays, etc. LRET in either a supramolecular organogel or a hydrogel is still an unexplored field. In this work we showed the energy transfer from Tb(III) to two different red emitting dyes in Tb-cholate hydrogel (Figure 3). The self assembly processes during hydrogelation assisted the energy transfer process without any need for laborious synthesis. The energy transfer was confirmed by time delayed emission, excitation spectra and lifetime measurement in the hydrogels. Energy transfer was observed both in the gel and the xerogel states. These luminescent materials may find applications in optoelectronics.
Figure 3. Energy transfer from DHN to Tb3+ and then to red emitting dyes (Rhodamine B & Sulforhodamine 101) in the Tb-Cholate hydrogel
Chapter 5: Room temperature synthesis of Lanthanide phosphate nanoparticle using a gel as a soft template
Lanthanide orthophosphates are an important class of rare earth compounds, and have widespread applications in laser materials, optical sensors, heat resistance materials, solar cell etc. There are several methods in the literature for the synthesis of rare earth phosphate nanoparticles. Most of these are based on hydrothermal, microwave assisted, micro emulsion, arrested precipitation etc., which invariably dependent on stringent conditions such as (i) high temperatures and pressures, (ii) inert atmosphere and (iii) the use of external capping agents as stabilizers. Synthesis of such nanoparticles under milder conditions would always be preferable. In this context, the preparation of nanoparticles using hydrogel as template can be a possible alternative approach.
The LnPO4 nanoparticle synthesis was done by diffusion of Na3PO4 in Ln-cholate hydrogels. The particles were characterized by transmission electron microscopy (TEM) and powder XRD analysis. TEM showed the formation of 3-4 nm size particles with an ordered arrangement on the gel fibre. This work demonstrated that the lanthanide cholate gels have high potential for the synthesis, and immobilization of lanthanide phosphate nanoparticles at room temperature to produce new types of composite materials.
(For structural formula pl see the abstract pdf file)
|
Page generated in 0.087 seconds