• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluating the effects of specialty protein sources on nursery pig performance

Jones, Aaron Michael January 1900 (has links)
Doctor of Philosophy / Department of Animal Sciences and Industry / Jason C. Woodworth / A total of 6,465 nursery pigs were used in 8 experiments. Experiment 1 investigated the effects of Lactobacillus plantarum (LP) or fermented soybean meal (FSBM) on nursery pig growth performance. A LP × FSBM interaction was detected for G:F, where LP and FSBM individually improved G:F, but the effect was not additive. Experiment 2 evaluated the effects of increasing levels of LP on nursery pig performance. No evidence for differences in growth performance were observed among dietary treatments. Experiment 3 and 4 examined the effects of fish meal source and level on nursery pig growth performance. Overall, a source × level interaction for ADG, G:F and final BW was observed as increasing fish meal source 1 improved ADG and G:F; however, pigs fed fish meal source 2 had improved ADG and G:F at 3%, but decreased at 6%. Pigs fed fish meal source 3 had no further improvements in ADG and G:F beyond the 3% inclusion. No evidence for differences were detected between the dietary treatments for ADFI. Experiment 5 evaluated the effects of feeding fish solubles on nursery pig performance. Pigs fed diets with fish meal had increased ADG and ADFI compared to pigs fed the control diet. There was no evidence for differences in growth performance as fish solubles increased. Experiment 6 and 7 investigated the effects of enzymatically-treated soybean meal (ESBM) on nursery pig performance. Results indicated that nursery pigs fed diets with greater than 9% of ESBM resulted in decreased ADFI and final BW. Experiment 8 evaluated the effects of dietary electrolyte balance (dEB) on nursery pig performance. Increasing dEB in diets from weaning to 21-d after weaning resulted in an increase in ADG and BW, which was the result of a marginally significant improvement in ADFI and G:F. Finally, an experiment was conducted to determine the optimal strategy for collecting and submitting samples that adequately describe the nutrient levels in diets collected from a commercial swine facility. Sampling feeders with a probe resulted in less variability on an individual basis, but seemed to get washed out when individual samples were pooled to form a composite sample.
2

Binding of the Monomeric Form of C-Reactive Protein to Enzymatically-Modified Low-Density Lipoprotein: Effects of Phosphoethanolamine

Singh, Sanjay K., Suresh, Madathilparambil V., Hammond, David J., Rusiñol, Antonio E., Potempa, Lawrence A., Agrawal, Alok 11 August 2009 (has links)
Background: The 5 subunits of native pentameric C-reactive protein (CRP) are dissociated to generate the monomeric form of CRP (mCRP) in some in vitro conditions, both physiological and non-physiological, and also in vivo. Many bioactivities of mCRP generated by urea-treatment of CRP and of mCRP generated by mutating the primary structure of CRP have been reported. The bioactivities of mCRP generated by spontaneous dissociation of CRP are largely unexplored. Methods: We purified mCRP generated by spontaneous dissociation of CRP and investigated the binding of mCRP to enzymatically-modified low-density lipoprotein (E-LDL). Results: mCRP was approximately 60 times more potent than CRP in binding to E-LDL. In the presence of the small-molecule compound phosphoethanolamine (PEt), at 37 °C, the binding of mCRP to E-LDL was enhanced <2-fold, while the binding of CRP to E-LDL was enhanced >10-fold. In contrast, PEt inhibited the binding of both CRP and mCRP to pneumococcal C-polysaccharide, another phosphocholine-containing ligand to which CRP and mCRP were found to bind. We have not investigated yet whether PEt alters the structure of CRP at 37 °C. Conclusions: Combined data suggest that the targeting of CRP with the aim to monomerize CRP in vivo may be an effective approach to capture modified forms of LDL.
3

Atherosclerosis-Related Functions of C-Reactive Protein

Agrawal, Alok, Hammond, David J., Singh, Sanjay K. 01 January 2010 (has links)
C-reactive protein (CRP) is secreted by hepatocytes as a pentameric molecule made up of identical monomers, circulates in the plasma as pentamers, and localizes in atherosclerotic lesions. In some cases, localized CRP was detected by using monoclonal antibodies that did not react with native pentameric CRP but were specific for isolated monomeric CRP. It has been reported that, once CRP is bound to certain ligands, the pentameric structure of CRP is altered so that it can dissociate into monomers. Accordingly, the monomeric CRP found in atherosclerotic lesions may be a stationary, ligand-bound, by-product of a ligand-binding function of CRP. CRP binds to modified forms of low-density lipoprotein (LDL). The binding of CRP to oxidized LDL requires acidic pH conditions; the binding at physiological pH is controversial. The binding of CRP to enzymatically-modified LDL occurs at physiological pH; however, the binding is enhanced at acidic pH. Using enzymatically-modified LDL, CRP has been shown to prevent the formation of enzymatically-modified LDL-loaded macrophage foam cells. CRP is neither pro-atherogenic nor atheroprotective in ApoE-/-and ApoB100/100Ldlr-/-murine models of atherosclerosis, except in one study where CRP was found to be slightly atheroprotective in ApoB100/100Ldlr-/-mice. The reasons for the ineffectiveness of human CRP in murine models of atherosclerosis are not defined. It is possible that an inflammatory environment, such as those characterized by acidic pH, is needed for efficient interaction between CRP and atherogenic LDL during the development of atherosclerosis and to observe the possible atheroprotective function of CRP in animal models.
4

Label‑free imaging flow cytometry for analysis and sorting of enzymatically dissociated tissues

Herbig, Maik, Tessmer, Karen, Nötzel, Martin, Nawaz, Ahsan Ahmad, Santos‑Ferreira, Tiago, Borsch, Oliver, Gasparini, Sylvia J., Guck, Jochen, Ader, Marius 16 May 2024 (has links)
Biomedical research relies on identification and isolation of specific cell types using molecular biomarkers and sorting methods such as fluorescence or magnetic activated cell sorting. Labelling processes potentially alter the cells’ properties and should be avoided, especially when purifying cells for clinical applications. A promising alternative is the label-free identification of cells based on physical properties. Sorting real-time deformability cytometry (soRT-DC) is a microfluidic technique for label-free analysis and sorting of single cells. In soRT-FDC, bright-field images of cells are analyzed by a deep neural net (DNN) to obtain a sorting decision, but sorting was so far only demonstrated for blood cells which show clear morphological differences and are naturally in suspension. Most cells, however, grow in tissues, requiring dissociation before cell sorting which is associated with challenges including changes in morphology, or presence of aggregates. Here, we introduce methods to improve robustness of analysis and sorting of single cells from nervous tissue and provide DNNs which can distinguish visually similar cells. We employ the DNN for image-based sorting to enrich photoreceptor cells from dissociated retina for transplantation into the mouse eye.

Page generated in 0.047 seconds