• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies of structure, function and mechanism in pyrimidine nucleotide biosynthesis

Harris, Katharine Morse January 2012 (has links)
Thesis advisor: Evan R. Kantrowitz / Thesis advisor: Mary F. Roberts / Living organisms depend on enzymes for the synthesis using small molecule precursors of cellular building blocks. For example, the amino acid aspartate is synthesized in one step by the amination of oxaloacetate, an intermediate compound produced in the citric acid cycle, exclusively by means of an aminotransferase enzyme. Therefore, function of this aminotransferase is critical to produce the amino acid. In the Kantrowitz Lab, we seek to understand the molecular rational for the function of enzymes that control rates for the biosynthesis of cellular building blocks. If one imagines the above aspartate-synthesis example as a single running conveyer belt, any oxaloacetate that finds its way onto that belt will be chemically transformed to give aspartate. We can extend this notion of a conveyer belt to any enzyme. Therefore, the rate at which the belt moves dictates the rate of synthesis. Now imagine many, many conveyer belts lined in a row to give analogy to a biosynthesis pathway requiring more than one enzyme for complete chemical synthesis. This is such the case for the biosynthesis of nucleotides and glucose. Nature has developed clever tricks to exquisitely control the rate of product output but means of altering the rate of one or some of the belts in the line of many, without affecting the rate of others. This type of biosynthetic rate regulation is termed allostery. Studies described in this dissertation will address questions of allosteric processes and the chemistry performed by two entirely different enzymes and biosynthetic pathways. The first enzyme of interest is fructose-1,6-bisphosphatase (FBPase) and its role in the biosynthesis of glucose. Following FBPase introduction in Chapter One, Chapter Two describes the minimal atomic scaffold necessary in a new class of allosteric type 2 diabetes drug molecules to effect catalytic inhibition of <italic>Homo sapiens</italic> FBPase. Following, is the second enzyme of interest, aspartate transcarbamoylase (ATCase) and its role in the biosynthesis of pyrimidine nucleotides. Succeeding ATCase introduction in Chapter Three, Chapter Four describes a body of work exclusively about the catalysis by ATCase. This work was inspired by the human form of the enzyme following the human genome project completion providing data that show likely <italic>Homo sapiens</italic> ATCase is not allosterically regulated. Chapter Five describes work on a allosterically-regulated, mutant ATCase and provides a biochemical model for the molecular rational for the catalytic inhibition upon cytidine triphosphate (CTP) binding to the allosteric site. The experimental techniques used for answering research questions were enzyme X-ray crystallography, <italic>in silico</italic> docking, kinetic assay experiments, genetic sub-cloning and genetic mutation. / Thesis (PhD) — Boston College, 2012. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
2

Hemocyanin-derived phenoloxidase : biochemical and cellular investigations of innate immunity

Coates, Christopher J. January 2012 (has links)
Hemocyanins (Hcs) and phenoloxidases (POs) are both members of the type-3 copper protein family, possessing di-cupric active sites which facilitate the binding of dioxygen. While Hcs and POs share a high degree of sequence homology, Hcs have been associated traditionally with oxygen transport whereas POs are catalytic proteins with a role in innate immunity. Evidence gathered in recent years details numerous immune functions for Hc, including an inducible PO activity. Unlike the pro-phenoloxidase activation cascade in arthropods, the endogenous mechanism(s) involved in the conversion of Hc into an immune enzyme is lacking in detail. The overall aim of this research was to characterise the physiological circumstances in which Hc is converted into a PO-like enzyme during immune challenge. A series of biochemical, biophysical and cellular techniques were used to assess the ability of phospholipid liposomes to mimic the well-characterised induction of PO activity in Hc by SDS micelles. Incubation of Hc purified from Limulus polyphemus, in the presence of phosphatidylserine (PS) liposomes, yielded ~ 90% of the PO activity observed upon incubation of Hc with the non-physiological activator, SDS. Phospholipid–induced PO activity in Hc was accompanied by secondary and tertiary structural changes similar to those observed in the presence of SDS. Subsequent analysis revealed that electrostatic interactions appear to be important in the PS-Hc activation complex. In vivo, PS-Hc interactions are assumed to be limited in quiescent cells. However, amebocytes undergoing apoptosis redistribute PS onto the outer leaflet of the plasma membrane, resulting in the potential for increased Hc-PS interactions. In the absence of a reliable culturing technique for L. polyphemus amebocytes, in vitro conditions were optimised for the short term maintenance of this labile cell type. Amebocytes retained viability and functionality in a medium that mimicked most-closely, the biochemical properties of L. polyphemus hemolymph. When presented with a fungal, bacterial or synthetic challenge, ~9% of amebocytes in vitro were found to be phagocytically active. Target internalisation was confirmed via the use of fluorescent quenchers and membrane probes. Within 4 hours of target internalisation, amebocytes underwent apoptosis, characterised by the loss of plasma and mitochondrial membrane potential, increased caspase-3 activity and extracellularisation of PS. Phagocytosis-induced cell death led to a proportional increase in the level of Hc-derived PO activity, suggesting that Hc may be interacting with PS present on terminal amebocyte membranes. The PO activity of Hc was investigated further in order to address an economically important issue; hyperpigmentation in commercial shellfish. While PO enzymes are thought to be the cause of hyperpigmentation in Nephrops norvegicus, evidence presented here suggests that cellular PO is inactivated after freeze-thawing, while extracellular Hc retains stability and displays a heightened level of inducible PO activity under similar treatments. Known PO inhibitors were used successfully to reduce Hc-derived PO activity, with inhibitors assumed to bind Hc in a manner similar to PO-inhibitor complexes. Structural and functional studies of hemocyanins and immune cells presented here provide new insights into the interactions of hemocyanin-activator complexes in invertebrates.

Page generated in 0.1152 seconds