• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1110
  • 974
  • 177
  • 163
  • 59
  • 55
  • 31
  • 31
  • 31
  • 31
  • 31
  • 31
  • 22
  • 22
  • 22
  • Tagged with
  • 3385
  • 906
  • 252
  • 229
  • 228
  • 222
  • 211
  • 197
  • 189
  • 188
  • 173
  • 170
  • 167
  • 159
  • 157
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
631

Investigating the basis of substrate specificity in butane monooxygenase and chlorinated ethene toxicity in Pseudomonas butanovora /

Halsey, Kimberly H. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2007. / Printout. Includes bibliographical references (leaves 101-116). Also available on the World Wide Web.
632

Ontogeny of rat CYP2E1 and CYP1A2 : a characterization and a pharmacokinetic model

Elbarbry, Fawzy Ahmed 31 August 2006
Infantile exposure to xenobiotics, e.g. from breastfeeding, poses a serious toxicity risk. Since the toxicokinetic mechanisms that principally determine exposure outcomes undergo a significant developmental maturation, infants may respond to exposures in a different way than adults. Hence, suitable model systems are required to provide risk relevant information in pediatric populations. This dissertations primary goal was to provide a critical evaluation of two such model systems; first, a pharmacokinetic model that may predict an infants capacity to eliminate toxicants by cytochrome P-450 (CYP) mechanisms and second, the developing rat as a model of human CYP2E1 and CYP1A2 ontogeny.<p>The first objective was to evaluate underlying assumptions of a pharmacokinetic model that describes the ontogeny of hepatic CYP activity using the rat. The study recognized some discrepancies with the stated assumptions. The impact of these discrepancies on the potential applicability of the model is discussed. As proof-of-concept, the observed data were fit to a model describing rat CYP2E1 and CYP1A2 ontogeny. A reasonable correlation (r = 0.75) was observed between observed and predicted oral clearance values of a CYP2E1 substrate indicating the potential applicability of such a model in risk assessment. <p>The second objective was to conduct an extensive characterization of rat hepatic CYP2E1 and CYP1A2 ontogeny at mRNA, protein, activity and intrahepatic expression levels. The results were compared to available human data to determine the appropriateness of the rat for assessment of toxicokinetic mechanisms underlying age-dependent differences in susceptibility to toxicity. Similarities in age-dependent changes in mRNA, activity and zonal hepatic expression patterns were noted between the rat and human prior to weaning. Unlike human data, rats show good correlation between changes in CYP2E1 and CYP1A2 activity and transcript levels, but not with the immunoquantifiable protein. Recognizing such similarities and differences between rats and human regarding onset, rate and pattern of CYP ontogeny will improve the accuracy of rat-to-human extrapolation of developmental toxicokinetic data. <p>Overall, the dissertation research provides mounting and supportive evidence for the use of such model systems in providing risk-relevant information in pediatric populations and to identify toxicokinetic mechanisms underlying age-dependent differences in susceptibility to toxicity.
633

Ontogeny of rat CYP2E1 and CYP1A2 : a characterization and a pharmacokinetic model

Elbarbry, Fawzy Ahmed 31 August 2006 (has links)
Infantile exposure to xenobiotics, e.g. from breastfeeding, poses a serious toxicity risk. Since the toxicokinetic mechanisms that principally determine exposure outcomes undergo a significant developmental maturation, infants may respond to exposures in a different way than adults. Hence, suitable model systems are required to provide risk relevant information in pediatric populations. This dissertations primary goal was to provide a critical evaluation of two such model systems; first, a pharmacokinetic model that may predict an infants capacity to eliminate toxicants by cytochrome P-450 (CYP) mechanisms and second, the developing rat as a model of human CYP2E1 and CYP1A2 ontogeny.<p>The first objective was to evaluate underlying assumptions of a pharmacokinetic model that describes the ontogeny of hepatic CYP activity using the rat. The study recognized some discrepancies with the stated assumptions. The impact of these discrepancies on the potential applicability of the model is discussed. As proof-of-concept, the observed data were fit to a model describing rat CYP2E1 and CYP1A2 ontogeny. A reasonable correlation (r = 0.75) was observed between observed and predicted oral clearance values of a CYP2E1 substrate indicating the potential applicability of such a model in risk assessment. <p>The second objective was to conduct an extensive characterization of rat hepatic CYP2E1 and CYP1A2 ontogeny at mRNA, protein, activity and intrahepatic expression levels. The results were compared to available human data to determine the appropriateness of the rat for assessment of toxicokinetic mechanisms underlying age-dependent differences in susceptibility to toxicity. Similarities in age-dependent changes in mRNA, activity and zonal hepatic expression patterns were noted between the rat and human prior to weaning. Unlike human data, rats show good correlation between changes in CYP2E1 and CYP1A2 activity and transcript levels, but not with the immunoquantifiable protein. Recognizing such similarities and differences between rats and human regarding onset, rate and pattern of CYP ontogeny will improve the accuracy of rat-to-human extrapolation of developmental toxicokinetic data. <p>Overall, the dissertation research provides mounting and supportive evidence for the use of such model systems in providing risk-relevant information in pediatric populations and to identify toxicokinetic mechanisms underlying age-dependent differences in susceptibility to toxicity.
634

Development of enzyme-based biosensors for the detection of organophosphate neurotoxins

Paliwal, Sheetal, Simonian, Aleksandr L., January 2008 (has links) (PDF)
Thesis (Ph. D.)--Auburn University, 2008. / Abstract. Vita. Includes bibliographical references (p. 32-46).
635

Enzyme-assisted synthesis of structured lipids containing long-chain omega-3 and omega-6 polyunsaturated fatty acids /

Senanayake, S. P. J. Namal, January 2000 (has links)
Thesis (Ph.D.)--Memorial University of Newfoundland, 2001. / Restricted until June 2002. Bibliography: leaves 287-325.
636

Characterization of the TPQ cofactor in amine oxidases and the heme cofactor in cystathionine beta-synthase by resonance raman spectroscopy. : Implications for catalytic properties /

Green, Edward L., January 2001 (has links)
Thesis (Ph. D.)--OGI School of Science and Engineering at OHSU, 2001.
637

Structural enzymology of human senescence marker protein 30 (SMP30) insights into the gluconolactonase mechanism and role of metal ions /

Chakraborti, Subhendu. January 2009 (has links)
Thesis (Ph.D.)--University of Delaware, 2009. / Principal faculty advisor: Brian J. Bahnson, Dept. of Chemistry & Biochemistry. Includes bibliographical references.
638

Application of comparative molecular field analysis for predicting microbial sulfoxidation /

Huang, Wen-hsin, January 2000 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2000. / Vita. Includes bibliographical references (leaves 203-215). Available also in a digital version from Dissertation Abstracts.
639

Proteolytic enzyme in soy sauce fermentation

Chan, Chun, Jade. January 2001 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2001. / Includes bibliographical references (leaves 55-61).
640

Induction of threonine dehydratase in developing rat liver.

Yeung, Yee-guide. January 1974 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1974. / Mimeographed.

Page generated in 0.0469 seconds