• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

M?todos num?ricos para resolu??o de equa??es diferenciais ordin?rias lineares baseados em interpola??o por spline

Araujo, Thiago Jefferson de 13 August 2012 (has links)
Made available in DSpace on 2014-12-17T15:26:38Z (GMT). No. of bitstreams: 1 ThiagoJA_DISSERT.pdf: 636679 bytes, checksum: 3497bfd29c2779ff70f7932b9a308a9c (MD5) Previous issue date: 2012-08-13 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / In this work we have elaborated a spline-based method of solution of inicial value problems involving ordinary differential equations, with emphasis on linear equations. The method can be seen as an alternative for the traditional solvers such as Runge-Kutta, and avoids root calculations in the linear time invariant case. The method is then applied on a central problem of control theory, namely, the step response problem for linear EDOs with possibly varying coefficients, where root calculations do not apply. We have implemented an efficient algorithm which uses exclusively matrix-vector operations. The working interval (till the settling time) was determined through a calculation of the least stable mode using a modified power method. Several variants of the method have been compared by simulation. For general linear problems with fine grid, the proposed method compares favorably with the Euler method. In the time invariant case, where the alternative is root calculation, we have indications that the proposed method is competitive for equations of sifficiently high order. / Neste trabalho desenlvolvemos um m?todo de resolu??o de problemas de valor inicial com equa??es diferenciais ordin?rias baseado em splines, com ?nfase em equa??es lineares. O m?todo serve como alternativa para os m?todos tradicionais como Runge-Kutta e no caso linear com coeficientes constantes, evita o c?lculo de ra?zes de polin?mios. O m?todo foi aplicado para um problema central da teoria de controle, o problema de resposta a degrau para uma EDO linear, incluindo o caso de coeficientes n?o-constantes, onde a alternativa pelo c?lculo de ra?zes n?o existe. Implementamos um algoritmo eficiente que usa apenas opera??es tipo matriz-vetor. O intervalo de trabalho (at? o tempo de acomoda??o) para as equa??es est?veis com coeficientes constantes ?e determinado pelo c?lculo da raiz menos est?vel do sistema, a partir de uma adapta??o do m?todo da pot?ncia. Atrav?s de simula??es, comparamos algumas variantes do m?todo. Em problemas lineares gerais com malha suficientemente fina, o novo m?todo mostra melhores resultados em compara??o com o m?todo de Euler. No caso de coeficientes constantes, onde existe a alternativa baseada em c?lculo das ra?zes, temos indica??es que o novo m?todo pode ficar competitivo para equa??es de grau bastante alto

Page generated in 0.1287 seconds