• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Equações parciais elípticas com crescimento exponencial / Elliptic partial equiations with exponential growth

Leuyacc, Yony Raúl Santaria 07 March 2014 (has links)
Neste trabalho estudamos existência, multiplicidade e não existência de soluções não triviais para o seguinte problema elíptico: { - \'DELTA\' = f(x, u), em \'OMEGA\' u = 0, sobre \'\\PARTIAL\' \'OMEGA\', onde \'OMEGA\' é um conjunto limitado de \'R POT. 2\' com fronteira suave e a função f possui crescimento exponencial. Para a existência de soluções são aplicados métodos variacionais combinados com as desigualdades de Trudinger-Moser. O resultado de não-existência é restrito ao caso de soluções radiais positivas e \'OMEGA\' = \'B IND.1\'(0). A prova usa técnicas de equações diferenciais ordinárias / In this work we study the existence, multiplicity and non-existence of non-trivial solutions to the following elliptic problem: { - \'DELTA\' u = f(x; u); in \'OMEGA\', ; u = 0; on \'\\PARTIAL\' \'OMEGA\' where \"OMEGA\' is a bounded and smooth domain in \'R POT. 2\' and f possesses exponential growth. The existence results are proved by using variational methods and the Trudinger- Moser inequalities. The non-existence result is restricted to the case of positive radial solutions and \'OMEGA\' = \'B IND. 1\'(0). The proof uses techniques of the theory of ordinary differential equations.
2

Equações parciais elípticas com crescimento exponencial / Elliptic partial equiations with exponential growth

Yony Raúl Santaria Leuyacc 07 March 2014 (has links)
Neste trabalho estudamos existência, multiplicidade e não existência de soluções não triviais para o seguinte problema elíptico: { - \'DELTA\' = f(x, u), em \'OMEGA\' u = 0, sobre \'\\PARTIAL\' \'OMEGA\', onde \'OMEGA\' é um conjunto limitado de \'R POT. 2\' com fronteira suave e a função f possui crescimento exponencial. Para a existência de soluções são aplicados métodos variacionais combinados com as desigualdades de Trudinger-Moser. O resultado de não-existência é restrito ao caso de soluções radiais positivas e \'OMEGA\' = \'B IND.1\'(0). A prova usa técnicas de equações diferenciais ordinárias / In this work we study the existence, multiplicity and non-existence of non-trivial solutions to the following elliptic problem: { - \'DELTA\' u = f(x; u); in \'OMEGA\', ; u = 0; on \'\\PARTIAL\' \'OMEGA\' where \"OMEGA\' is a bounded and smooth domain in \'R POT. 2\' and f possesses exponential growth. The existence results are proved by using variational methods and the Trudinger- Moser inequalities. The non-existence result is restricted to the case of positive radial solutions and \'OMEGA\' = \'B IND. 1\'(0). The proof uses techniques of the theory of ordinary differential equations.

Page generated in 0.1102 seconds