• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 1
  • Tagged with
  • 22
  • 22
  • 22
  • 12
  • 8
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Mathematical modelling of oxygen transport in skeletal and cardiac muscles

Alshammari, Abdullah A. A. M. F. January 2014 (has links)
Understanding and characterising the diffusive transport of capillary oxygen and nutrients in striated muscles is key to assessing angiogenesis and investigating the efficacy of experimental and therapeutic interventions for numerous pathological conditions, such as chronic ischaemia. In articular, the influence of both muscle tissue and microvascular heterogeneities on capillary oxygen supply is poorly understood. The objective of this thesis is to develop mathematical and computational modelling frameworks for the purpose of extending and generalising the current use of histology in estimating the regions of tissue supplied by individual capillaries to facilitate the exploration of functional capillary oxygen supply in striated muscles. In particular, we aim to investigate the balance between local capillary supply of oxygen and oxygen demand in the presence of various anatomical and functional heterogeneities, by capturing tissue details from histological imaging and estimating or predicting regions of capillary supply. Our computational method throughout is based on a finite element framework that captures the anatomical details of tissue cross sections. In Chapter 1 we introduce the problem. In Chapter 2 we develop a theoretical model to describe oxygen transport from capillaries to uniform muscle tissues (e.g. cardiac muscle). Transport is then explored in terms of oxygen levels and capillary supply regions. In Chapter 3 we extend this modelling framework to explore the influence of the surrounding tissue by accounting for the spatial anisotropies of fibre oxygen demand and diffusivity and the heterogeneity in fibre size and shape, as exemplified by mixed muscle tissues (e.g. skeletal muscle). We additionally explore the effects of diffusion through the interstitium, facilitated--diffusion by myoglobin, and Michaelis--Menten kinetics of tissue oxygen consumption. In Chapter 4, a further extension is pursued to account for intracellular heterogeneities in mitochondrial distribution and diffusive parameters. As a demonstration of the potential of the models derived in Chapters 2--4, in Chapter 5 we simulate oxygen transport in myocardial tissue biopsies from rats with either impaired angiogenesis or impaired arteriolar perfusion. Quantitative predictions are made to help explain and support experimental measurements of cardiac performance and metabolism. In the final chapter we summarize the main results and indicate directions for further work.
22

Mathematical evolutionary epidemiology : limited epitopes, evolution of strain structures and age-specificity

Cherif, Alhaji January 2015 (has links)
We investigate the biological constraints determined by the complex relationships between ecological and immunological processes of host-pathogen interactions, with emphasis on influenza viruses in human, which are responsible for a number of pandemics in the last 150 years. We begin by discussing prolegomenous reviews of historical perspectives on the use of theoretical modelling as a complementary tool in public health and epidemiology, current biological background motivating the objective of the thesis, and derivations of mathematical models of multi-locus-allele systems for infectious diseases with co-circulating serotypes. We provide detailed analysis of the multi-locus-allele model and its age-specific extension. In particular, we establish the necessary conditions for the local asymptotic stability of the steady states and the existence of oscillatory behaviours. For the age-structured model, results on the existence of a mild solution and stability conditions are presented. Numerical studies of various strain spaces show that the dynamic features are preserved. Specifically, we demonstrate that discrete antigenic forms of pathogens can exhibit three distinct dynamic features, where antigenic variants (i) fully self-organize and co-exist with no strain structure (NSS), (ii) sort themselves into discrete strain structure (DSS) with non-overlapping or minimally overlapping clusters under the principle of competitive exclusion, or (iii) exhibit cyclical strain structure (CSS) where dominant antigenic types are cyclically replaced with sharp epidemics dominated by (1) a single strain dominance with irregular emergence and re-emergence of certain pathogenic forms, (2) ordered alternating appearance of a single antigenic type in periodic or quasi-periodic form similar to periodic travelling waves, (3) erratic appearance and disappearance of synchrony between discrete antigenic types, and (4) phase-synchronization with uncorrelated amplitudes. These analyses allow us to gain insight into the age-specific immunological profile in order to untangle the effects of strain structures as captured by the clustering behaviours, and to provide public health implications. The age-structured model can be used to investigate the effect of age-specific targeting for public health purposes.

Page generated in 0.1164 seconds