181 |
Some efficient numerical methods for inverse problems. / CUHK electronic theses & dissertations collectionJanuary 2008 (has links)
Inverse problems are mathematically and numerically very challenging due to their inherent ill-posedness in the sense that a small perturbation of the data may cause an enormous deviation of the solution. Regularization methods have been established as the standard approach for their stable numerical solution thanks to the ground-breaking work of late Russian mathematician A.N. Tikhonov. However, existing studies mainly focus on general-purpose regularization procedures rather than exploiting mathematical structures of specific problems for designing efficient numerical procedures. Moreover, the stochastic nature of data noise and model uncertainties is largely ignored, and its effect on the inverse solution is not assessed. This thesis attempts to design some problem-specific efficient numerical methods for the Robin inverse problem and to quantify the associated uncertainties. It consists of two parts: Part I discusses deterministic methods for the Robin inverse problem, while Part II studies stochastic numerics for uncertainty quantification of inverse problems and its implication on the choice of the regularization parameter in Tikhonov regularization. / Key Words: Robin inverse problem, variational approach, preconditioning, Modica-Motorla functional, spectral stochastic approach, Bayesian inference approach, augmented Tikhonov regularization method, regularization parameter, uncertainty quantification, reduced-order modeling / Part I considers the variational approach for reconstructing smooth and nonsmooth coefficients by minimizing a certain functional and its discretization by the finite element method. We propose the L2-norm regularization and the Modica-Mortola functional from phase transition for smooth and nonsmooth coefficients, respectively. The mathematical properties of the formulations and their discrete analogues, e.g. existence of a minimizer, stability (compactness), convexity and differentiability, are studied in detail. The convergence of the finite element approximation is also established. The nonlinear conjugate gradient method and the concave-convex procedure are suggested for solving discrete optimization problems. An efficient preconditioner based on the Sobolev inner product is proposed for justifying the gradient descent and for accelerating its convergence. / Part II studies two promising methodologies, i.e. the spectral stochastic approach (SSA) and the Bayesian inference approach, for uncertainty quantification of inverse problems. The SSA extends the variational approach to the stochastic context by generalized polynomial chaos expansion, and addresses inverse problems under uncertainties, e.g. random data noise and stochastic material properties. The well-posedness of the stochastic variational formulation is studied, and the convergence of its stochastic finite element approximation is established. Bayesian inference provides a natural framework for uncertainty quantification of a specific solution by considering an ensemble of inverse solutions consistent with the given data. To reduce its computational cost for nonlinear inverse problems incurred by repeated evaluation of the forward model, we propose two accelerating techniques by constructing accurate and inexpensive surrogate models, i.e. the proper orthogonal decomposition from reduced-order modeling and the stochastic collocation method from uncertainty propagation. By observing its connection with Tikhonov regularization, we propose two functionals of Tikhonov type that could automatically determine the regularization parameter and accurately detect the noise level. We establish the existence of a minimizer, and the convergence of an alternating iterative algorithm. This opens an avenue for designing fully data-driven inverse techniques. / This thesis considers deterministic and stochastic numerics for inverse problems associated with elliptic partial differential equations. The specific inverse problem under consideration is the Robin inverse problem: estimating the Robin coefficient of a Robin boundary condition from boundary measurements. It arises in diverse industrial applications, e.g. thermal engineering and nondestructive evaluation, where the coefficient profiles material properties on the boundary. / Jin, Bangti. / Adviser: Zou Jun. / Source: Dissertation Abstracts International, Volume: 70-06, Section: B, page: 3541. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 174-187). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
|
182 |
Incompressible Boussinesq equations and spaces of borderline Besov typeGlenn-Levin, Jacob Benjamin 12 July 2012 (has links)
The Boussinesq approximation is a set of fluids equations utilized in the atmospheric and oceanographic sciences. They may be thought of as inhomogeneous, incompressible Euler or Navier-Stokes equations, where the inhomogeneous term is a scalar quantity, typically representing density or temperature, governed by a convection-diffusion equation.
In this thesis, we prove local-in-time existence and uniqueness of an inviscid Boussinesq system. Furthermore, we show that under stronger assumptions, the local-in-time results can be extended to global-in-time existence and
uniqueness as well. We assume the density equation contains nonzero diffusion and that our initial vorticity and density belong to a space of borderline Besov-type. We use paradifferential calculus and properties of the Besov-type
spaces to control the growth of vorticity via an a priori estimate on the growth of density. This result is motivated by work of M. Vishik demonstrating local-in-time existence and uniqueness for 2D Euler equations in borderline Besov-type spaces, and by work of R. Danchin and M. Paicu showing the global well-posedness of the 2D Boussinesq system with initial data in critical Besov and Lp-spaces. / text
|
183 |
Random and periodic homogenization for some nonlinear partial differential equationsSchwab, Russell William, 1979- 16 October 2012 (has links)
In this dissertation we prove the homogenization for two very different classes of nonlinear partial differential equations and nonlinear elliptic integro-differential equations. The first result covers the homogenization of convex and superlinear Hamilton-Jacobi equations with stationary ergodic dependence in time and space simultaneously. This corresponds to equations of the form: [mathematical equation]. The second class of equations is nonlinear integro-differential equations with periodic coefficients in space. These equations take the form, [mathematical equation]. / text
|
184 |
Random and periodic homogenization for some nonlinear partial differential equationsSchwab, Russell William, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2009. / Title from PDF title page (University of Texas Digital Repository, viewed on Sept. 9, 2009). Vita. Includes bibliographical references.
|
185 |
ANALYSIS OF A FINITE VOLUME NUMERICAL SCHEME AS APPLIED TO THE RINGLEB PROBLEM.Gross, Karl J. January 1984 (has links)
No description available.
|
186 |
The dynamics of wave propagation in an inhomogeneous medium: the complex Ginzburg-Landau modelLam, Chun-kit., 林晉傑. January 2008 (has links)
published_or_final_version / Mechanical Engineering / Master / Master of Philosophy
|
187 |
Pathwise view on solutions of stochastic differential equationsSipiläinen, Eeva-Maria January 1993 (has links)
The Ito-Stratonovich theory of stochastic integration and stochastic differential equations has several shortcomings, especially when it comes to existence and consistency with the theory of Lebesque-Stieltjes integration and ordinary differential equations. An attempt is made firstly, to isolate the path property, possessed by almost all Brownian paths, that makes the stochastic theory of integration work. Secondly, to construct a new concept of solutions for differential equations, which would have the required consistency and continuity properties, within a class of deterministic noise functions, large enough to include almost all Brownian paths. The algebraic structure of iterated path integrals for smooth paths leads to a formal definition of a solution for a differential equation in terms of generalized path integrals for more general noises. This suggests a way of constructing solutions to differential equations in a large class of paths as limits of operators. The concept of the driving noise is extended to include the generalized path integrals of the noise. Less stringent conditions on the Holder continuity of the path can be compensated by giving more of its iterated integrals. Sufficient conditions for the solution to exist are proved in some special cases, and it is proved that almost all paths of Brownian motion as well as some other stochastic processes can be included in the theory.
|
188 |
Difference equations and their symmetriesNdlovu, Lungelo Keith 29 January 2015 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of requirements for the degree of Master of Science. September 26, 2014. / The aim of the dissertation is to extend on the work done by Hydon in [17]. We
only consider second order ordinary difference equations and calculate their symmetry
generators, first integrals and reduce their order, that is, find a general solution.
We investigate the association between a symmetry generator and a first integral.
Furthermore, we investigate when a reduced equation may be further reduced and
lead to a double reduction. The examples considered are obtained from [17].
ii
|
189 |
Some new results on nonlinear elliptic equations and systems. / CUHK electronic theses & dissertations collectionJanuary 2011 (has links)
In Chapter 2 we study the uniqueness problem of sign-changing solutions for a nonlinear scalar equation. It is well-known that positive solution is radially symmetric and unique up to a translation. Recently, there are many works on the existence and multiplicity of sign-changing solutions. However much less is known for uniqueness, even in the radially symmetric class. In Chapter 2, we solve this problem for nearly critical nonlinearity by Lyaponov-Schmidt reduction. Moreover, we can also prove the non-degeneracy. / In Chapter 3 we are concerned with the uniqueness problem for coupled nonlinear Schrodinger equations. The problem is to classify all positive solutions. In Chapter 3, some sufficient conditions are given. In particular, we have a sufficient and necessary condition in one dimension. The proof is elementary because only the implicit function theorem, integration by parts, and the uniqueness for scalar equation are needed. / In Chapter 4 we go back to the nonlinear scalar equation and consider the traveling wave solutions. Using an infinite dimensional Lyaponov-Schmidt reduction, new examples of traveling wave solutions are constructed. Our approach explains the difference between two dimension and higher dimensions, and also explores a connection between moving fronts and the mean curvature flow. This is the first such traveling waves connecting the same states. / This thesis is devoted to the study of nonlinear elliptic equations and systems. It is divided into two parts. In the first part, we study the uniqueness problem, and in the second part, we are concerns with traveling wave solutions. / Yao, Wei. / Adviser: Jun Cheng Wei. / Source: Dissertation Abstracts International, Volume: 73-06, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 132-142). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
|
190 |
Numerical solution of fractional differential equations and their application to physics and engineeringFerrás, Luís J. L. January 2018 (has links)
This dissertation presents new numerical methods for the solution of fractional differential equations of single and distributed order that find application in the different fields of physics and engineering. We start by presenting the relationship between fractional derivatives and processes like anomalous diffusion, and, we then develop new numerical methods for the solution of the time-fractional diffusion equations. The first numerical method is developed for the solution of the fractional diffusion equations with Neumann boundary conditions and the diffusivity parameter depending on the space variable. The method is based on finite differences, and, we prove its convergence (convergence order of O(Δx² + Δt²<sup>-α</sup>), 0 < α < 1) and stability. We also present a brief description of the application of such boundary conditions and fractional model to real world problems (heat flux in human skin). A discussion on the common substitution of the classical derivative by a fractional derivative is also performed, using as an example the temperature equation. Numerical methods for the solution of fractional differential equations are more difficult to develop when compared to the classical integer-order case, and, this is due to potential singularities of the solution and to the nonlocal properties of the fractional differential operators that lead to numerical methods that are computationally demanding. We then study a more complex type of equations: distributed order fractional differential equations where we intend to overcome the second problem on the numerical approximation of fractional differential equations mentioned above. These equations allow the modelling of more complex anomalous diffusion processes, and can be viewed as a continuous sum of weighted fractional derivatives. Since the numerical solution of distributed order fractional differential equations based on finite differences is very time consuming, we develop a new numerical method for the solution of the distributed order fractional differential equations based on Chebyshev polynomials and present for the first time a detailed study on the convergence of the method. The third numerical method proposed in this thesis aims to overcome both problems on the numerical approximation of fractional differential equations. We start by solving the problem of potential singularities in the solution by presenting a method based on a non-polynomial approximation of the solution. We use the method of lines for the numerical approximation of the fractional diffusion equation, by proceeding in two separate steps: first, spatial derivatives are approximated using finite differences; second, the resulting system of semi-discrete ordinary differential equations in the initial value variable is integrated in time with a non-polynomial collocation method. This numerical method is further improved by considering graded meshes and an hybrid approximation of the solution by considering a non-polynomial approximation in the first sub-interval which contains the origin in time (the point where the solution may be singular) and a polynomial approximation in the remaining intervals. This way we obtain a method that allows a faster numerical solution of fractional differential equations (than the method obtained with non-polynomial approximation) and also takes into account the potential singularity of the solution. The thesis ends with the main conclusions and a discussion on the main topics presented along the text, together with a proposal of future work.
|
Page generated in 0.098 seconds