• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 10
  • 10
  • 8
  • 6
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Regulation of adenosine transporter and AMPA receptor subunit localization by protein kinase CK2 in rat hippocampus

Longmuir, Nicole 25 July 2011
The control of extracellular adenosine is crucial to the regulation of synaptic transmission and neuroprotection. Equilibrative nucleoside transporters (ENTs) are highly expressed in the hippocampus and widely accepted as critical regulators of adenosine tone. However, the mechanisms regulating the surface distribution and transport function of ENTs are largely unknown. Since ENT1 and ENT2 contain consensus sequences for phosphorylation by protein kinase CK2, and because this protein has been reported to regulate synaptic plasticity and ENT function in non-neuronal systems, the present thesis outlines the hypothesis that CK2-induced phosphorylation of ENTs is important for their cellular localization and thus the regulation of adenosine tone and synaptic transmission. Here, a functional interaction between adenosine CK2, ENTs and AMPA receptors in the hippocampus is reported. Western blot analysis shows that a variety of CK2 inhibitors (DMAT, TBB and DRB) significantly reduced the density of ENT1 and ENT2 proteins in hippocampal membrane fractions, suggesting that CK2-mediated phosphorylation of ENTs promotes their surface localization. In contrast, it was found that the ENT1 inhibitor NBTI significantly increased in the membrane localization of ENT1, relative to the control. Moreover, ENTs were found to immunoprecipitate with GluR1 and GluR2-containing AMPA receptors; and CK2 inhibitors caused a decrease in the membrane localization of GluR2 and GluR1 AMPA receptors. These results suggest a novel signaling complex linking CK2-regulated adenosine transport to AMPA receptor trafficking in the rat hippocampus. Although the physiological significance of these findings requires further investigation, this thesis provides insight into an adenosine regulation pathway that may be important for the regulation of synaptic transmission and neuroprotection in the rat hippocampus.
2

Regulation of adenosine transporter and AMPA receptor subunit localization by protein kinase CK2 in rat hippocampus

Longmuir, Nicole 25 July 2011 (has links)
The control of extracellular adenosine is crucial to the regulation of synaptic transmission and neuroprotection. Equilibrative nucleoside transporters (ENTs) are highly expressed in the hippocampus and widely accepted as critical regulators of adenosine tone. However, the mechanisms regulating the surface distribution and transport function of ENTs are largely unknown. Since ENT1 and ENT2 contain consensus sequences for phosphorylation by protein kinase CK2, and because this protein has been reported to regulate synaptic plasticity and ENT function in non-neuronal systems, the present thesis outlines the hypothesis that CK2-induced phosphorylation of ENTs is important for their cellular localization and thus the regulation of adenosine tone and synaptic transmission. Here, a functional interaction between adenosine CK2, ENTs and AMPA receptors in the hippocampus is reported. Western blot analysis shows that a variety of CK2 inhibitors (DMAT, TBB and DRB) significantly reduced the density of ENT1 and ENT2 proteins in hippocampal membrane fractions, suggesting that CK2-mediated phosphorylation of ENTs promotes their surface localization. In contrast, it was found that the ENT1 inhibitor NBTI significantly increased in the membrane localization of ENT1, relative to the control. Moreover, ENTs were found to immunoprecipitate with GluR1 and GluR2-containing AMPA receptors; and CK2 inhibitors caused a decrease in the membrane localization of GluR2 and GluR1 AMPA receptors. These results suggest a novel signaling complex linking CK2-regulated adenosine transport to AMPA receptor trafficking in the rat hippocampus. Although the physiological significance of these findings requires further investigation, this thesis provides insight into an adenosine regulation pathway that may be important for the regulation of synaptic transmission and neuroprotection in the rat hippocampus.
3

Localisation of equilibrative nucleoside transporter 3 (ENT3) in mouse brain

Roberts, Lauren Emilienne 12 January 2015 (has links)
Adenosine is an essential purine nucleoside of particular importance within heart and brain. The widespread and diverse actions of adenosine, driven by activation of cell surface receptors, include regulation of sleep/arousal and neuroprotective properties. The mechanisms involved in regulating adenosine concentrations remain poorly understood but are critical to signaling pathways as they determine the availability of adenosine at corresponding receptors within the extracellular space. The equilibrative nucleoside transporter (ENT) family, bi-directional, Na+-independent nucleoside transporters, are key components in both the release and uptake of adenosine. This study has been conducted to investigate ENT3, a novel member of the ENT family. Our work has demonstrated ENT3 to be expressed throughout brain, located in cortex, cerebellum, striatum and hippocampus, at similar levels. Neurons and astrocytes, but not microglia, showed intracellular ENT3 localisation. This was confirmed by differential centrifugation, of cortex and cerebellum, which suggests ENT3 to be found within the cytoplasm.
4

Renal proximal tubular handling of nucleosides by human nucleoside transporter proteins

Elwi, Adam Unknown Date
No description available.
5

Renal proximal tubular handling of nucleosides by human nucleoside transporter proteins

Elwi, Adam 11 1900 (has links)
Human cells possess multiple nucleoside transporters (NTs) that belong to either the human equilibrative or concentrative NT (hENT: hENT1/2/3/4; hCNT: CNT1/2/3) families. In the kidney, coupling of apical hCNT3 activities to basolateral hENT1/2 activities is hypothesized to mediate renal nucleoside proximal tubular absorption while apical ENT1 may have a role in secretion. The overall aim of this research was to increase understanding of the roles of hENTs and hCNTs in renal handling of physiological nucleosides and anti-cancer nucleoside analog drugs. This was achieved by investigating the distribution of hENTs and hCNTs in human kidney tissue and the function of hENTs and hCNTs in cellular uptake and transepithelial fluxes of nucleosides in cultured human renal proximal tubule cells (hRPTCs). Immunolocalization of hCNT3 and hENT1 in human kidney tissue revealed that hENT and hCNT3 were present in apical membranes of proximal tubules. Production and characterization of adherent hRPTC cultures demonstrated endogenous hCNT3, hENT1, and hENT2 activities. These results provided evidence for the involvement of hCNT3, hENT1, and hENT2 in renal handling of nucleosides. Comparison of adherent hRPTC cultures derived from kidneys from different individuals demonstrated that hCNT3 activities varied between cultures. Also, the extent of cellular uptake of fludarabine, an anti-cancer nucleoside drug, and degree of cytotoxicity was reflected in the different hCNT3 activities observed between cultures. These results suggested that hCNT3 plays an important role in fludarabine renal handling and is a determinant of potential renal toxicities. Production of polarized monolayer cultures of hRPTCs on transwell permeable inserts enabled the functional localization of hCNT3 and hENT1 to apical membranes and hENT2 to basolateral membranes. Transepithelial flux studies demonstrated that (i) apical-to-basolateral fluxes of adenosine were mediated by apical hCNT3 and basolateral hENT2, (ii) basolateral-to-apical fluxes of 2′-deoxyadenosine were mediated, in part, by apical hENT1 and basolateral hOATs, and (iii) apical-to-basolateral fluxes of fludarabine, cladribine, and clofarabine were mediated by apical hCNT3. These studies showed that coupling of apical hCNT3 to basolateral hENT2 mediates proximal tubular nucleoside reabsorption, that coupling of basolateral human organic anion transporters (hOATs) to apical hENT1 mediates proximal tubular nucleoside secretion, and that hCNT3 is a key determinant of fludarabine proximal tubular reabsorption and cytoxicity.
6

Effect of human equilibrative nucleoside transporter 1 (hENT1) and ecto-5' nucleotidase (eN) in adenosine formation by neurons and astrocytes under ischemic conditions.

Chu, Stephanie S.T.Y. 17 August 2012 (has links)
Adenosine (ADO) is an endogenous neuroprotectant. Under ischemic conditions ADO levels rise in the brain up to 100-fold. ADO in the brain is dependent on the movement across cell membranes by equilibrative nucleoside transporters (ENT) or produced from membrane bound ecto-5’ nucleotidase (eN). We used transgenic neurons with neuronal specific expression of human ENT1 (hENT1) and eN knockout (CD73 KO) astrocytes. The aim of this research was to determine the role of ENT1 and eN in ADO release from ischemic-like conditions in primary cultured neurons, astrocytes or co-cultures. Neurons primarily release intracellular ADO via ENTs; this effect was blocked by transporter inhibitor, dipyridamole (DPR). Astrocytes primarily convert ADO extracellularly from eN; this effect was with eN inhibitor α, β-methylene ADP (AOPCP). Combined neuron and KO astrocytes produced less ADO, extracellular ADO was inhibited by DPR but not AOPCP. Overall these results suggest that eN is prominent in the formation of ADO but other enzymes or pathways contribute to rising ADO levels in ischemic conditions.
7

Structural and functional analysis of a novel organic cation/monoamine transporter PMAT in the SLC29 family /

Zhou, Mingyan. January 2007 (has links)
Thesis (Ph. D.)--University of Washington, 2007. / Vita. Includes bibliographical references (leaves 128-140).
8

The Role of the Stroma and CYR61 in Chemoresistance in Pancreatic Cancer

Hesler, Rachel Anne January 2016 (has links)
<p>Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer in part due to inherent resistance to chemotherapy, including the first-line drug gemcitabine. Gemcitabine is a nucleoside pyrimidine analog that has long been the backbone of chemotherapy for PDAC, both as a single agent, and more recently, in combination with nab-paclitaxel. Since gemcitabine is hydrophilic, it must be transported through the hydrophobic cell membrane by transmembrane nucleoside transporters. Human equilibrative nucleoside transporter-1 (hENT1) and human concentrative nucleoside transporter-3 (hCNT3) both have important roles in the cellular uptake of the nucleoside analog gemcitabine. While low expression of hENT1 and hCNT3 has been linked to gemcitabine resistance clinically, mechanisms regulating their expression in the PDAC tumor microenvironment are largely unknown. We identified that the matricellular protein Cysteine-Rich Angiogenic Inducer 61 (CYR61) negatively regulates expression of hENT1 and hCNT3. CRISPR/Cas9-mediated knockout of CYR61 significantly increased expression of hENT1 and hCNT3 and cellular uptake of gemcitabine. CRSIPR-mediated knockout of CYR61 sensitized PDAC cells to gemcitabine-induced apoptosis. Conversely, adenovirus-mediated overexpression of CYR61 decreased hENT1 expression and reduced gemcitabine-induced apoptosis. We demonstrate that CYR61 is expressed primarily by stromal pancreatic stellate cells (PSCs) within the PDAC tumor microenvironment, with Transforming Growth Factor- β (TGF-β) inducing the expression of CYR61 in PSCs through canonical TGF-β-ALK5-Smad signaling. Activation of TGF-β signaling or expression of CYR61 in PSCs promotes resistance to gemcitabine in an in vitro co-culture assay with PDAC cells. Our results identify CYR61 as a TGF-β induced stromal-derived factor that regulates gemcitabine sensitivity in PDAC and suggest that targeting CYR61 may improve chemotherapy response in PDAC patients.</p> / Dissertation
9

Studium interakcí antiretroviálního léčiva tenofoviru a jeho proléčiva tenofoviru disoproxil fumarátu s placentárními nukleosidovými transportéry / Study of interactions of antiviral drug tenofovir and its prodrug tenofovir disoproxil fumarate with placental nucleoside transporters

Lalinská, Anežka January 2018 (has links)
Charles University Faculty of Pharmacy in Hradec Králové Department of Pharmacology & Toxicology Student: Anežka Lalinská Supervisor: PharmDr. Lukáš Červený, Ph.D. Title of diploma thesis: Study of interactions of antiretroviral drug tenofovir and its prodrug tenofovir disoproxil fumarate with placental nucleoside transporters Tenofovir (TFV) in the form of ester prodrug tenofovir disoproxil fumarate (TDF) is an essential part of combination antiretroviral therapy. It is often used in the prevention of perinatal HIV transmission. However, precise mechanism(s) involved in transfer of TFV/TDF from mother to fetus are not described in detail. Since these drugs are nucleoside analogues, there is a possibility that the mechanisms of their transplacental passage might include nucleoside transporters (NTs), either equilibrative or concentrative (ENTs/CNTs). The aim of the diploma thesis was to investigate the role of placental NTs in membrane transfer of TFV and TDF. To address this issue, we performed in vitro accumulation in the BeWo cell line derived from placental choriocarcinoma. By evaluating experiments, we found out that both TFV and TDF might not be substrates of NTs, thus the role of these transporters in TFV/TDF placental pharmacokinetics was not confirmed. Therefore, the drug-drug interactions on NTs...
10

Metal Containing Nucleosides that Function as Therapeutic and Diagnostic Agents Against Brain Cancer

Williams, Jennifer Nicole 02 September 2014 (has links)
No description available.

Page generated in 0.0466 seconds