• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influence of Calcium Phosphate and Apatite Containing Products on Enamel Erosion

Kensche, Anna, Pötschke, Sandra, Hannig, Christian, Richter, Gert, Hoth-Hannig, Wiebke, Hannig, Matthias 19 January 2017 (has links) (PDF)
For the purpose of erosion prevention the present study aimed to compare the efficacy of two biomimetic products and a fluoride solution to optimize the protective properties of the pellicle. After 1 min of in situ pellicle formation on bovine enamel slabs, 8 subjects adopted CPP-ACP (GC Tooth Mousse), a mouthwash with hydroxyapatite microclusters (Biorepair), or a fluoride based mouthwash (elmex Kariesschutz) for 1 min each. Afterwards, samples were exposed in the oral cavity for 28 min. Native enamel slabs and slabs exposed to the oral cavity for 30 min without any rinse served as controls. After oral exposure, slabs were incubated in HCl (pH values 2, 2.3, and 3) for 120 s and kinetics of calcium and phosphate release were measured photometrically; representative samples were evaluated by SEM and TEM. The physiological pellicle reduced demineralization at all pH values; the protective effect was enhanced by fluoride. The biomimetic materials also reduced ion release but their effect was less pronounced. SEM indicated no layer formation after use of the different products. However, TEM confirmed the potential accumulation of mineral components at the pellicle surface. The tested products improve the protective properties of the in situ pellicle but not as effectively as fluorides.
2

Influence of Calcium Phosphate and Apatite Containing Products on Enamel Erosion

Kensche, Anna, Pötschke, Sandra, Hannig, Christian, Richter, Gert, Hoth-Hannig, Wiebke, Hannig, Matthias 19 January 2017 (has links)
For the purpose of erosion prevention the present study aimed to compare the efficacy of two biomimetic products and a fluoride solution to optimize the protective properties of the pellicle. After 1 min of in situ pellicle formation on bovine enamel slabs, 8 subjects adopted CPP-ACP (GC Tooth Mousse), a mouthwash with hydroxyapatite microclusters (Biorepair), or a fluoride based mouthwash (elmex Kariesschutz) for 1 min each. Afterwards, samples were exposed in the oral cavity for 28 min. Native enamel slabs and slabs exposed to the oral cavity for 30 min without any rinse served as controls. After oral exposure, slabs were incubated in HCl (pH values 2, 2.3, and 3) for 120 s and kinetics of calcium and phosphate release were measured photometrically; representative samples were evaluated by SEM and TEM. The physiological pellicle reduced demineralization at all pH values; the protective effect was enhanced by fluoride. The biomimetic materials also reduced ion release but their effect was less pronounced. SEM indicated no layer formation after use of the different products. However, TEM confirmed the potential accumulation of mineral components at the pellicle surface. The tested products improve the protective properties of the in situ pellicle but not as effectively as fluorides.
3

Interaction between tin/flouride-containing solutions and artificially created dental pellicles on erosion prevetion in vitro

Algarni, Amnah Abdullah A. January 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI)School of dentistry / BACKGROUND: Fluoride and stannous ions have been reported to be relevant for dental erosion prevention. However, their interaction with the acquired dental pellicle (ADP), a clinically relevant erosion protective factor, is not well known and needs to be investigated. OBJECTIVES: To investigate the anti-erosive properties of fluoride-containing solutions and stannous solutions on enamel and dentin surfaces with a previously formed ADP. To characterize the protein profile of the ADP treated with the test solutions. METHODS: Phase I tested four solutions: SnCl2/NaF, NaF, SnCl2 and deionized water (DIW) (as negative control). Forty bovine enamel and dentin specimens 104 (4x4x2 mm3) were prepared and randomly distributed into 4 groups (n = 10). The specimens were incubated in clarified human saliva (CHS) for 24 h for pellicle formation and then they were subjected to a cycling procedure that included a 5-min erosive challenge (0.3-percent citric acid, pH 2.6); a 2-min treatment with the solution (between 1st, 3rd and 6th cycles); a 2-h immersion in CHS, and overnight immersion in CHS. Cycles were repeated 6x/day for 5 days. The outcome measure was surface loss (SL) using profilometry. Phase II: Thirty-two (32) bovine enamel specimens (882 mm3) (n = 8) were similarly prepared and incubated in saliva for 24 h and then treated with the solutions for 2 min followed by CHS immersion for 2 h. This cycle was repeated 3x for one day. The pellicles formed and treated with the test rinse solutions were collected, digested, and analyzed for specific protein content using liquid chromatography electrospray ionization tandem mass spectrometry (LCESI-MS/MS). RESULTS: Phase I: for enamel, SnCl2/NaF, SnCl2, NaF solutions provided 89 percent, 67 percent, and 42 percent SL reduction respectively compared with the control, while in dentin they provided 60 percent, 23 percent, and 36 percent, respectively, all significant at p < 0.05. Phase II: Seventy-two (72) common proteins were identified in all groups, 30 exclusive to DIW, 20 to SnCl2/NaF, 19 to NaF, and 13 to SnCl2. SnCl2/NaF increased the abundance of pellicle proteins than each one alone. CONCLUSION: SnCl2/NaF showed the best anti-erosive effect on both enamel and dentin. The findings suggest that the composition of acquired pellicle changes with different solutions, which may be related to their anti-erosive effect.

Page generated in 0.1536 seconds