291 |
Tube erosion in fluidized bedsZhu, Jingxu (Jesse) January 1988 (has links)
Heat transfer tubes suffer erosion when immersed in fluidized beds. This has caused problems, especially in fluidized bed combustors. The mechanism of erosion for horizontal tubes in fluidized beds is not well understood. The purpose of this study was to investigate the erosion mechanism in fluidized beds and to investigate the influence of operating parameters and the mechanical properties of the particles and tube materials.
Horizontal tube erosion tests were carried out in a room temperature three-dimensional fluidized bed with a cross-section of 216 mm by 203 mm and height of 1.52 m. Sample rings of ten different materials were mounted on a solid bar and were weighed before and after each test to determine the erosion rate. The parameters tested were particle size (0.30 to 1.51 mm), particle sphericity (0.84 to 1.0), particle density, particle hardness, superficial air velocity (0.88 to 2.52 m/s), tube diameter (15 mm to 32 mm), tube configuration and material mechanical properties. Two additional types of experiments were also conducted to help understand the mechanism of erosion. In one particles were dropped freely in an empty column to impact on test specimens at different velocities determined by the dropping distance, in order to investigate erosion due to solid particle impact under known conditions. In the other the particle movement was filmed in the vicinity of a horizontal tube in a two-dimensional fluidized bed in order to investigate the particle flow pattern around a tube. A small number of tests were also conducted at high temperatures.
The erosion of a horizontal tube in fluidized beds was found to be caused mainly by the impact of solid particles on the lower surface. Erosion was found to be strongly dependent on the particle impact velocity, which is closely related to the void (bubble or slug) rise velocity. The void rise velocity, in turn, is determined by the mean void size which depends on the superficial air velocity, column size and other fluidizing conditions. Particle diameter also has a strong influence on erosion. The target material Young's modulus appears to be the major mechanical property which is closely related to the erosion rate caused by solid impact erosion. Of the materials tested, all non-ferrous metals suffer much more erosion than ferrous metals. Localized high particle velocities due to jets and at bends or near feed points can be extremely harmful.
The mechanism of erosion caused by low velocity (< 6m/s) solid particle impacts appears to be different than that caused by high velocity (> 30m/s) impacts reported in the literature, although there are some similarities in trends. The erosion at low impact velocities appears to be mainly due to a surface fatigue process, which, instead of plastically deforming a small amount of target material for every impact, deforms the target materials in the elastic range and causes them to crack on or underneath the surface leading to removal of materials. / Applied Science, Faculty of / Chemical and Biological Engineering, Department of / Graduate
|
292 |
Erosion suite à l'impact d'un arc électrique : modélisation et campagnes expérimentales en vue du développement d'un matériau de substitution à l'alliage AgCdO / Electrical contact material arc erosion : experiments and modeling towards the design of an AgCdO substitutePons, Frédéric 07 May 2010 (has links)
L’AgCdO est l’un des matériaux de contact parmi les plus répandus dans le monde du fait de ses excellentes propriétés. Cependant, étant donné la présence de Cadmium dans celui-ci, il sera bientôt totalement interdit par des directives européennes d’ordre environnementales. Trouver un matériau ne contenant pas de Cadmium et ayant au moins d’aussi bonnes propriétés est donc la clé du projet. Le phénomène d’érosion du matériau de contact suite à l’impact d’un arc électrique joue un rôle de premier ordre dans la fiabilité et la durée de vie des dispositifs de commutation de puissance. Celui-ci influe en effet sur les propriétés du matériau et affecte ainsi le fonctionnement du dispositif de commutation de puissance. Dans ce contexte, nos axes de recherche ont été les suivants. Avant tout, et ce afin de mieux comprendre le comportement à l’érosion suite à l’impact d’un arc électrique de l’AgCdO (matériau de contact utilisé actuellement dans l’industrie aérospatiale) et celui de l’AgSnO2 (candidat potentiel au remplacement de l’AgCdO), des essais ont été réalisés en soumettant les dispositifs de commutation de puissance à différents nombres de décharges. Ensuite, un modèle macroscopique permettant de prédire l’érosion d’un matériau suite à l’impact d’un arc électrique, valable pour faibles et forts courants, a été développé. Ce modèle décrit le processus complet de coupure et donne la quantité totale de matériau érodé suite à une opération de commutation. En parallèle, des essais ont été réalisés sur des dispositifs de commutation de puissance AgCdO à forts courants (0 -> 1000 A) afin de valider ce modèle d’érosion. Les propriétés matériau les plus influentes sur le processus d’érosion ont ensuite été déterminées à l’aide de ce modèle. Enfin, une étude ab initio portant sur les effets d’un changement de composition locale du matériau sur ses propriétés identifiées comme influentes sur le processus d’érosion a été réalisée. Ainsi, l’ensemble de ces travaux permettront de conclure sur des directives dans l’élaboration du matériau de contact qui remplacera l’AgCdO, objectif principal de ces travaux de recherche / AgCdO is one of the most widely used contact materials in the world because of its outstanding performance. Nevertheless, due to environmental considerations, it will soon be completely forbidden by European environmental directives. Therefore, finding a good substitute is of crucial importance. Electrical arc erosion plays a crucial role in the reliability and life of power switching devices. Depending on the contact material’s behavior in response to an electrical arc, surface damage can induce severe changes in contact material properties that will impact the power switching device’s functioning. Consequently, electrical arc effects and consequences on the contact material surface are of first importance. In this context, we have focused our research activities on the following axes. First of all, in order to better understand AgCdO (Current contact material in aerospace industry) and AgSnO2 (Potential candidate to AgCdO substitution) arc erosion behaviors, arc erosion experiments, where the power switching devices have been subjected to different numbers of arc discharges, have been realized. Further, a general macroscopic electrical contact arc erosion model valid for low and high currents was developed. To compare model results to experimental data, this model describes the complete breaking process of electrical contacts and gives the total amount of material removed after one breaking operation. In parallel, arc erosion experiments on AgCdO power switching devices have been conducted at high currents (0 -> 1000 A) in order to validate the arc erosion model. Next, using the general arc erosion model, the properties having the greatest influence on the electrical arc erosion process have been determined through simulations on silver contact material. At this stage, ab initio calculations were needed to obtain ranges of variation of certain silver contact material properties. Finally, an investigation of the trends of changing local contact material composition of AgSnO2 on these identified material properties was performed. This study was based on ab initio calculations for two different oxide compositions of AgSnO2. These will allow us to give directions to aid the design of a good substitute for AgCdO, and therefore, to complete the main objective of this research work
|
293 |
Rebuilding the site: A study of resiliency, sustainability, and redevelopment in the context of global climate changeJanuary 2017 (has links)
Displacement has continuously plagued communities for as long as society has existed. The refugee in response to climate change creates a relatively new facet in approaching relocation of a community due to circumstances that negate self-infliction and are product of irreversible external factors. As the coastal periphery of our nation continues to sink at nauseating rates, with it takes homes, green space, agriculture, and economic practices. In addition to a drastic alteration in the way of life, an emotional phenomenon of place attachment becomes dramatically exposed as mother nature strips a community of their native geography. Though proposals to relocate can be beneficial in the mere sense of avoiding the inevitable, the need to preserve a familiar landscape creates a set of design issues of architectural mimicry placed in differing context than its original intent. Structure is designed according to contextual parameters that aim to make ease of living and circulation. One must be aware of the nostalgia built form and its competition with a new set of parameters. Especially when reliance on urbanized economical growth and networking is introduced. This thesis takes a critical look at the approach and practicality of displacement and relocation, its relationship to the new breed of global climate change refugees, and its overall necessity in an age of vast technological advances. Architectural intervention will be investigated at the root of the problem rather than by proposition of dislocating geography based culture. In order to prevent further urbanization issues in respect to sprawl and social integration, what would it take, or start to look like, to keep a population at heir original disappearing settlement? The Isle de Jean Charles and the Biloxi-Chitimacha-Choctaw tribe will act as the specific case study in developing a resilient and sustainable architectural catalyst. / 0 / SPK / specialcollections@tulane.edu
|
294 |
The Interaction Between Cavitation and Wear in Enclosed Spaces with Oscillating BoundariesWhaley, Erica Lee 21 May 2019 (has links)
No description available.
|
295 |
Evaluation of APEX for Simulating the Effects of Tillage Practices in tropical soilsWilson, Laura 03 May 2019 (has links)
Tillage practices on agricultural fields have an impact on not only the amount of soil erosion from the fields, but also on the hydrologic and other environmental characteristics of the land. This erosion takes away soil that is necessary for sustainable agriculture, and the sediment and nutrient removal from the fields can pollute surrounding waterbodies. The Llanos Orientales of Colombia used to be a region of extended savannas and native fragile ecosystems dedicated to extended cattle ranch that has been transitioning to crop production. Agricultural expansion in this area, involving mechanization, could importantly accelerate the degradation of soils, limiting the development of sustainable agricultural systems. As a first step to understand long term effects of different tillage practices on new agricultural areas in the region, this study aims to evaluate the performance of the Agricultural Policy Environmental eXtender (APEX) model to simulate runoff, soil erosion and crop yield from fields under conventional tillage, reduced tillage, and no tillage in the Llanos Orientales of Colombia. Calibrated APEX model predictions were compared against measured runoff, soil loss and crop yield data from row crop plots established in the Experimental Station la Libertad in Colombia under conventional, reduced and no-tillage management. APEX satisfactorily predicted runoff (Nash Sutcliffe Efficiency NSE>0.53, Percent Bias - [PBIAS] < 21%) and crop yield for all three tillage systems (NSE>0.82, [PBIAS] <15%), but was not successful in predicting soil loss from the studied plots. Unsuccessful results were related to model limitations to predict erosion (USLE equations), but also to any uncertainty attributed to issues in the data collection. A calibrated APEX model could be used to predict runoff and crop yield responses under different management practices in the Llanos Orientales of Colombia, but needs improvements for prediction of soil erosion in tropical soils.
|
296 |
Monitoring erosion features affected by land use from remotely sensed data (1938-1976) /Nosseir, Mostafa Kamel January 1980 (has links)
No description available.
|
297 |
An economic analysis of soil conservation limitations on the intensity of cropland use in Ohio /Nabaee-Tabriz, Saeed January 1985 (has links)
No description available.
|
298 |
Soil erodibility indices for Southern Quebec soils derived under variable intensity rainfall simulationMichaud, Aubert Raymond January 1987 (has links)
No description available.
|
299 |
Modeling Channel Degradation at the Watershed Scale: A Comparison of GWLF, SWAT, and CONCEPTSStaley, Nathan Andrew 05 January 2007 (has links)
In 2005 an assessment of existing Total Maximum Daily Load studies by the U.S. Environmental Protection Agency showed sediment as the fourth leading cause of water quality impairment. A source assessment is important in developing a successful TMDL. Past research efforts have focused on controlling erosion sources in agricultural and urban land areas. New research suggests major contributions to overall sediment loads may be due to stream channel degradation. Monitoring and modeling techniques to assess the contribution of channel sediment to overall sediment load are needed to determine the reductions necessary to meet water quality standards. This research focused on testing the ability of watershed and reach-scale models to predict stream channel degradation. Model predictions were compared to estimates developed from a system of erosion pins and scour chains.
A 500-m experimental reach in Blacksburg, VA, USA, was selected as the focus of channel degradation monitoring and modeling efforts. A series of over 250 erosion pins and seven scour chains were installed systematically throughout the experimental reach. A monthly monitoring program measured channel degradation for the period from July 2005 - June 2006. Point data were interpolated across individual bank segments to produce an estimate of soil erosion volume. Measured soil bulk densities were then used to calculate the estimated mass loading to Stroubles Creek from channel degradation.
Two watershed models and one reach-scale model were developed to predict sediment loading to the stream channel from channel degradation. The Generalized Watershed Loading Function (GWLF) was selected to represent watershed models with limited channel degradation process detail; the Soil and Water Assessment Tool (SWAT) represented the level of channel degradation detail seen in the majority of watershed models; and the CONservation Channel Evolution and Pollutant Transport System (CONCEPTS) reach-scale model was used to evaluate the effectiveness of a detailed process model. Monthly model predictions were compared to retreat rates measured using the erosion pin network.
Sediment loading to the stream from bank retreat was estimated as 41 tonnes/yr, based on erosion pin measurements. GWLF, SWAT, and CONCEPTS predicted stream channel sediment contributions of 8 tonnes/yr, 1500 tonnes/yr and 4 tonnes/yr, respectively. Theil-Sen non-parametric simple linear regression was used to test agreement between monthly model predictions and erosion pin estimates. No significant agreement was found between any model predictions and measured retreat, using a conservative a-value of 0.2. GWLF model predictions underpredicted measured channel degradation, but most closely approximated observed data. This result is likely due to similarities in climate and watershed characteristics for the Stroubles Creek watershed and the Pennsylvania watershed used in the empirical model development. SWAT predicted retreat rates exceeded measured values by two orders of magnitude. This result is explained by the inability of SWAT to predict daily flow and sediment discharge. Highly sensitive channel degradation parameters and the lack of calibration data also contributed to SWAT simulation error. CONCEPTS simulation predicted monthly retreat rates slightly less than GWLF. The lack of agreement between CONCEPTS simulation and observed data was mainly the result of limited input data availability. SWAT daily discharge predictions were used as CONCEPTS input data and likely contributed to poor model agreement. Poor estimation of sensitive sediment input parameters may have also contributed to underpredictions by CONCEPTS. Results showed the potential of screening-level watershed models in channel degradation prediction and the importance of flow and sediment time series discharge data in detailed process-based simulation. The limited flexibility of the GWLF channel degradation algorithm makes it unsuitable for evaluating the effects of stream restoration. SWAT and CONCEPTS should only be used for evaluation if appropriate input data are available.
Future research will focus on the development of a long-term flow and sediment monitoring data set. Few long-term data sets of this nature exist, making channel degradation modeling difficult. Development of long-term data will allow more accurate modeling and better assessment of channel restoration impacts on channel degradation. Further modeling with GWLF in geographic regions outside the Eastern United States is also needed to determine the scope of applicability of the GWLF channel degradation empirical relationship. Additional research should also focus on the significance of subaerial processes for watersheds of various sizes and on the development of algorithms to simulate these processes. / Master of Science
|
300 |
Evaluation of Phosphorus Transport and Transformations in GLEAMS 3.0Vincent, Amelia A. 01 September 2006 (has links)
The overall goal of this research was to improve simulation of soil phosphorus (P) transport and transformations in GLEAMS 3.0, a non-point source model that simulates edge-of-field and bottom-of-root-zone loadings of nutrients from climate-soil-management interactions to assess management alternatives. The objectives of this research were to identify the state of the science for P transport and transformations, determine appropriate relationships for inclusion in GLEAMS, and determine if modifications to GLEAMS improved predictions of P loss in runoff, sediment, and leachate.
The state of the science review revealed numerous equations available to predict dissolved P loss in runoff and leachate from a soil's nutrient status. These equations use a single variable to predict P loss and were developed for site-specific conditions based on empirical data. Use of these equations in GLEAMS is not reasonable as transport factors must also be considered when predicting P loss.
Results from the sensitivity analysis showed that GLEAMS prediction of leached P were extremely sensitive to changes in the P partitioning coefficient (CPKD). Runoff PO₄-P output was slightly to moderately sensitive, sediment PO₄-P was moderately sensitive to sensitive, and sediment organic P was moderately sensitive to changes in CPKD whereas plant uptake of P was insensitive to slightly sensitive. The weakness of GLEAMS to estimate CPKD has been documented. Upon further investigation, it was determined that CPKD was highly over-estimated in GLEAMS as compared to measured values found during the literature review. Furthermore, this over-estimation caused under-estimation of the P extraction coefficient (BETA P); the value of BETA P remained constant at 0.10 and did not vary over the simulation period.
Expressions for CPKD and BETA P were modified in GLEAMS. Data from three published studies (Belle Mina, Gilbert Farm, and Watkinsville) were used in the analyses of three modifications to GLEAMS: GLEAMS BETA P, GLEAMS CPKD, and GLEAMS BETA P+CPKD. GLEAMS BETA P investigated the change in BETA P as a function of soil clay content, GLEAMS CPKD attempted to improve GLEAMS' estimation of CPKD, and GLEAMS BETA P+CPKD assessed the combined effects of changes to BETA P and CPKD.
Over the respective study periods, GLEAMS over predicted runoff PO₄-P for Belle Mina by 193 to 238% while under-predicting runoff PO₄-P at Gilbert Farm by 41% and Watkinsville by 81%. Sediment P was over-predicted by GLEAMS for Belle Mina by 225 to 233% and Gilbert Farm by 560%, while sediment P was under-predicted by 62% at Watkinsville. Leached PO₄-P was both over- and under-predicted by GLEAMS; Belle Mina was the only data set with observed leached P values.
Simulation results from the model changes were inconclusive. There was no clear evidence supporting use of one model over another. Modifications increased predicted dissolved P in runoff and leachate, while decreasing predicted sediment-bound P in runoff. The original GLEAMS model best predicted runoff and leached PO₄-P at the Belle Mina sites. GLEAMS CPKD was the best predictor of runoff PO₄-P and sediment P at Gilbert Farm. GLEAMS BETA P+CPKD best predicted runoff PO₄-P at Watkinsville. Overall, the proposed improvements to GLEAMS did not improve GLEAMS predictions.
In conclusion, GLEAMS should not be used for quantitative estimates of hydrology, sediment, and nutrient loss for specific management practices. As recommended by the GLEAMS model developers, GLEAMS should only be used to predict relative differences in alternative management systems. It is recommended that future research focus on developing a better correlation between CPKD, clay mineralogy and content, and organic matter content, as CPKD has been identified as a vital component of the GLEAMS P sub-model that requires further examination. / Master of Science
|
Page generated in 0.0908 seconds