1 |
D-branes et orientifolds dans des espaces courbes ou dépendant du tempsCouchoud, Nicolas 01 October 2004 (has links) (PDF)
Dans cette thèse nous étudions la théorie des cordes en présence de<br />D-branes et éventuellement d'orientifolds dans des espaces courbes ou dépendants du temps. Notre étude vise à comprendre certains aspects des espaces courbes et dépendant du temps, notamment à cause de leur importance en cosmologie.<br /><br />Le premier chapitre introduit quelques bases de la théorie des cordes.<br /><br />Le deuxième chapitre étudie les cordes non orientées sur les groupes compacts SU(2) et SO(3) : après un rappel des résultats connus sur les D-branes dans ces espaces, nous présentons nos résultats sur la position des orientifolds et leur interaction avec les cordes ouvertes et fermées.<br /><br />Le troisième chapitre étudie les D-branes dans certains fonds de type Ramond-Ramond, en utilisant la S-dualité qui les relie à des fonds de type Neveu-Schwarz, où on sait faire les calculs.<br /><br />Le dernier chapitre considère les cordes sur une D-brane parcourue par une onde plane, et introduit les outils y permettant l'étude des interactions.
|
2 |
Effets non-linéaires et effets quantiques en gravité analogue / Nonlinear and quantum effects in analogue gravityMichel, Florent 23 June 2017 (has links)
Cette thèse concerne l'étude des propriétés de champs scalaires classiques et quantiques en présence d'un environnement inhomogène et/ou dépendant du temps. Nous nous concentrerons sur des modèles pouvant être décrits, fondamentalement ou de manière effective, par un espace-temps courbe contenant un horizon des événements. Nous verrons en particulier comment une correspondance mathématique, provenant d'une symétrie de Lorentz effective à basse énergie, permet de relier les comportements des ondes dans un cadre non relativiste à la physique des trous noirs, quelles en sont les limites et dans quelle mesure les résultats ainsi obtenus sont og analogues fg à leurs pendants gravitationnels. Après un premier chapitre d'introduction rappelant quelques bases de relativité générale puis une dérivation de la radiation de Hawking et de la correspondance avec des systèmes non relativistes, je présenterai le détail de quatre travaux effectués durant ma thèse. Les autres articles écrits dans ce cadre sont résumés dans le dernier chapitre, précédant une conclusion générale. Mes collaborateurs et moi nous sommes concentrés sur trois aspects du comportement des champs près de l'analogue d'un horizon des événements dans des modèles avec une symétrie de Lorentz effective à basse énergie. Le premier concerne les effets non linéaires, cruciaux pour comprendre l'évolution de la radiation de Hawking ainsi que pour les réalisations expérimentales mais auparavant peu étudiés. Nous montrerons comment ceux-ci déterminent les possibles comportements aux temps longs pour des systèmes stables ou instables. Le second aspect a trait aux effets linéaires et quantiques, en particulier la radiation de Hawking elle-même, son devenir lorsque l'horizon est continûment effacé, ainsi que les diverses instabilités à même de survenir dans différents modèles. Enfin, nous avons participé à l'élaboration, à l'analyse et à l'étude d’expériences dites de og gravité analogue fg dans des condensats de Bose-Einstein et des systèmes hydrodynamiques ou acoustiques, dont je rapporte les principaux résultats. / The present thesis deals with some properties of classical and quantum scalar fields in an inhomogeneous and/or time-dependent background, focusing on models where the latter can be described as a curved space-time with an event horizon. While naturally formulated in a gravitational context, such models extend to many physical systems with an effective Lorentz invariance at low energy. We shall see how this effective symmetry allows one to relate the behavior of perturbations in these systems to black-hole physics, what are its limitations, and in which sense results thus obtained are “analogous” to their general relativistic counterparts. The first chapter serves as a general introduction. A few notions from Einstein's theory of gravity are introduced and a derivation of Hawking radiation is sketched. The correspondence with low-energy systems is then explained through three important examples. The next four chapters each details one of the works completed during this thesis, updated and slightly reorganized to account for new developments which occurred after their publication. The other articles I contributed to are summarized in the last chapter, before the general conclusion. My collaborators and I focused on three aspects of the behavior of fields close to the (analogue) event horizon in models with an effective low-energy Lorentz symmetry. The first one concerns nonlinear effects, which had been given little attention in view of their crucial importance for understanding the evolution in time of Hawking radiation as well as for experimental realizations. We showed in particular how they determine the late-time behavior in stable and unstable configurations. The second aspect concerns linear and quantum effects. We studied the Hawking radiation itself in several models and what replaces it when continuously erasing the horizon. We also characterized and classified the different types of linear instabilities which can occur. Finally, we contributed to the design and analysis of “analogue gravity” experiments in Bose-Einstein condensates, hydrodynamic flows, and acoustic setups, of which I report the main results.
|
Page generated in 0.053 seconds