• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 1
  • Tagged with
  • 22
  • 19
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Representação Esparsa e Modelo de Esparsidade Conjunta no Reconhecimento de Faces

INABA, F. K. 11 June 2012 (has links)
Made available in DSpace on 2018-08-02T00:00:56Z (GMT). No. of bitstreams: 1 tese_4711_DissKentaro.pdf: 6208552 bytes, checksum: f5dd47fbef24d1bd09fe36e8a972c67c (MD5) Previous issue date: 2012-06-11 / Resumo: O trabalho desenvolvido nesta dissertação propõe a utilização do modelo de esparsidade conjunta com complemento de matrizes (JSM-MC) para composição da base de treino no contexto de reconhecimento de faces utilizando o classificador baseado em representação esparsa (SRC). O método proposto visa trabalhar com imagens de faces em diferentes condições de iluminação e oclusão na base de teste e treino. Para oclusões nas imagens de teste, um modelo diferenciado é considerado para abordar o problema. Uma etapa de pré-processamento nas imagens de faces é realizada no intuito de reduzir os efeitos das variações de iluminações presentes nas imagens. Um agrupamento das imagens de treino é realizado visando um menor tempo de processamento. Além disso, uma proposta de modificação no algoritmo SRC é feita de forma a explorar a esparsidade dos coeficientes de representação esparsa. Ao final, os resultados são avaliados usando uma base de dados sujeita a variação de iluminação. Oclusões artificiais são inseridas a fim de investigar o desempenho do sistema nessas condições.
2

Métodos de programação quadrática convexa esparsa e suas aplicações em projeções em poliedros / Sparse convex quadratic programming methods and their applications in projections onto poliedra

Polo, Jeinny Maria Peralta 07 March 2013 (has links)
O problema de minimização com restrições lineares e importante, não apenas pelo problema em si, que surge em várias áreas, mas também por ser utilizado como subproblema para resolver problemas mais gerais de programação não-linear. GENLIN e um método eficiente para minimização com restrições lineares para problemas de pequeno e médio porte. Para que seja possível a implementação de um método similar para grande porte, é necessário ter um método eficiente, também para grande porte, para projeção de pontos no conjunto de restrições lineares. O problema de projeção em um conjunto de restrições lineares pode ser escrito como um problema de programação quadrática convexa. Neste trabalho, estudamos e implementamos métodos esparsos para resolução de problemas de programação quadrática convexa apenas com restrições de caixa, em particular o clássico método Moré-Toraldo e o \"método\" NQC. O método Moré-Toraldo usa o método dos Gradientes Conjugados para explorar a face da região factível definida pela iteração atual, e o método do Gradiente Projetado para mudar de face. O \"método\" NQC usa o método do Gradiente Espectral Projetado para definir em que face trabalhar, e o método de Newton para calcular o minimizador da quadrática reduzida a esta face. Utilizamos os métodos esparsos Moré-Toraldo e NQC para resolver o problema de projeção de GENLIN e comparamos seus desempenhos / The linearly constrained minimization problem is important, not only for the problem itself, that arises in several areas, but because it is used as a subproblem in order to solve more general nonlinear programming problems. GENLIN is an efficient method for solving small and medium scaled linearly constrained minimization problems. To implement a similar method to solve large scale problems, it is necessary to have an efficient method to solve sparse projection problems onto linear constraints. The problem of projecting a point onto a set of linear constraints can be written as a convex quadratic programming problem. In this work, we study and implement sparse methods to solve box constrained convex quadratic programming problems, in particular the classical Moré-Toraldo method and the NQC \"method\". The Moré-Toraldo method uses the Conjugate Gradient method to explore the face of the feasible region defined by the current iterate, and the Projected Gradient method to move to a different face. The NQC \"method\" uses the Spectral Projected Gradient method to define the face in which it is going to work, and the Newton method to calculate the minimizer of the quadratic function reduced to this face. We used the sparse methods Moré-Toraldo and NQC to solve the projection problem of GENLIN and we compared their performances
3

Métodos de programação quadrática convexa esparsa e suas aplicações em projeções em poliedros / Sparse convex quadratic programming methods and their applications in projections onto poliedra

Jeinny Maria Peralta Polo 07 March 2013 (has links)
O problema de minimização com restrições lineares e importante, não apenas pelo problema em si, que surge em várias áreas, mas também por ser utilizado como subproblema para resolver problemas mais gerais de programação não-linear. GENLIN e um método eficiente para minimização com restrições lineares para problemas de pequeno e médio porte. Para que seja possível a implementação de um método similar para grande porte, é necessário ter um método eficiente, também para grande porte, para projeção de pontos no conjunto de restrições lineares. O problema de projeção em um conjunto de restrições lineares pode ser escrito como um problema de programação quadrática convexa. Neste trabalho, estudamos e implementamos métodos esparsos para resolução de problemas de programação quadrática convexa apenas com restrições de caixa, em particular o clássico método Moré-Toraldo e o \"método\" NQC. O método Moré-Toraldo usa o método dos Gradientes Conjugados para explorar a face da região factível definida pela iteração atual, e o método do Gradiente Projetado para mudar de face. O \"método\" NQC usa o método do Gradiente Espectral Projetado para definir em que face trabalhar, e o método de Newton para calcular o minimizador da quadrática reduzida a esta face. Utilizamos os métodos esparsos Moré-Toraldo e NQC para resolver o problema de projeção de GENLIN e comparamos seus desempenhos / The linearly constrained minimization problem is important, not only for the problem itself, that arises in several areas, but because it is used as a subproblem in order to solve more general nonlinear programming problems. GENLIN is an efficient method for solving small and medium scaled linearly constrained minimization problems. To implement a similar method to solve large scale problems, it is necessary to have an efficient method to solve sparse projection problems onto linear constraints. The problem of projecting a point onto a set of linear constraints can be written as a convex quadratic programming problem. In this work, we study and implement sparse methods to solve box constrained convex quadratic programming problems, in particular the classical Moré-Toraldo method and the NQC \"method\". The Moré-Toraldo method uses the Conjugate Gradient method to explore the face of the feasible region defined by the current iterate, and the Projected Gradient method to move to a different face. The NQC \"method\" uses the Spectral Projected Gradient method to define the face in which it is going to work, and the Newton method to calculate the minimizer of the quadratic function reduced to this face. We used the sparse methods Moré-Toraldo and NQC to solve the projection problem of GENLIN and we compared their performances
4

Esparsidade estruturada em reconstrução de fontes de EEG / Structured Sparsity in EEG Source Reconstruction

Francisco, André Biasin Segalla 27 March 2018 (has links)
Neuroimagiologia funcional é uma área da neurociência que visa o desenvolvimento de diversas técnicas para mapear a atividade do sistema nervoso e esteve sob constante desenvolvimento durante as últimas décadas devido à sua grande importância para aplicações clínicas e pesquisa. Técnicas usualmente utilizadas, como imagem por ressonância magnética functional (fMRI) e tomografia por emissão de pósitrons (PET) têm ótima resolução espacial (~ mm), mas uma resolução temporal limitada (~ s), impondo um grande desafio para nossa compreensão a respeito da dinâmica de funções cognitivas mais elevadas, cujas oscilações podem ocorrer em escalas temporais muito mais finas (~ ms). Tal limitação ocorre pelo fato destas técnicas medirem respostas biológicas lentas que são correlacionadas de maneira indireta com a atividade elétrica cerebral. As duas principais técnicas capazes de superar essa limitação são a Eletro- e Magnetoencefalografia (EEG/MEG), que são técnicas não invasivas para medir os campos elétricos e magnéticos no escalpo, respectivamente, gerados pelas fontes elétricas cerebrais. Ambas possuem resolução temporal na ordem de milisegundo, mas tipicalmente uma baixa resolução espacial (~ cm) devido à natureza mal posta do problema inverso eletromagnético. Um imenso esforço vem sendo feito durante as últimas décadas para melhorar suas resoluções espaciais através da incorporação de informação relevante ao problema de outras técnicas de imagens e/ou de vínculos biologicamente inspirados aliados ao desenvolvimento de métodos matemáticos e algoritmos sofisticados. Neste trabalho focaremos em EEG, embora todas técnicas aqui apresentadas possam ser igualmente aplicadas ao MEG devido às suas formas matemáticas idênticas. Em particular, nós exploramos esparsidade como uma importante restrição matemática dentro de uma abordagem Bayesiana chamada Aprendizagem Bayesiana Esparsa (SBL), que permite a obtenção de soluções únicas significativas no problema de reconstrução de fontes. Além disso, investigamos como incorporar diferentes estruturas como graus de liberdade nesta abordagem, que é uma aplicação de esparsidade estruturada e mostramos que é um caminho promisor para melhorar a precisão de reconstrução de fontes em métodos de imagens eletromagnéticos. / Functional Neuroimaging is an area of neuroscience which aims at developing several techniques to map the activity of the nervous system and has been under constant development in the last decades due to its high importance in clinical applications and research. Common applied techniques such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) have great spatial resolution (~ mm), but a limited temporal resolution (~ s), which poses a great challenge on our understanding of the dynamics of higher cognitive functions, whose oscillations can occur in much finer temporal scales (~ ms). Such limitation occurs because these techniques rely on measurements of slow biological responses which are correlated in a complicated manner to the actual electric activity. The two major candidates that overcome this shortcoming are Electro- and Magnetoencephalography (EEG/MEG), which are non-invasive techniques that measure the electric and magnetic fields on the scalp, respectively, generated by the electrical brain sources. Both have millisecond temporal resolution, but typically low spatial resolution (~ cm) due to the highly ill-posed nature of the electromagnetic inverse problem. There has been a huge effort in the last decades to improve their spatial resolution by means of incorporating relevant information to the problem from either other imaging modalities and/or biologically inspired constraints allied with the development of sophisticated mathematical methods and algorithms. In this work we focus on EEG, although all techniques here presented can be equally applied to MEG because of their identical mathematical form. In particular, we explore sparsity as a useful mathematical constraint in a Bayesian framework called Sparse Bayesian Learning (SBL), which enables the achievement of meaningful unique solutions in the source reconstruction problem. Moreover, we investigate how to incorporate different structures as degrees of freedom into this framework, which is an application of structured sparsity and show that it is a promising way to improve the source reconstruction accuracy of electromagnetic imaging methods.
5

Esparsidade estruturada em reconstrução de fontes de EEG / Structured Sparsity in EEG Source Reconstruction

André Biasin Segalla Francisco 27 March 2018 (has links)
Neuroimagiologia funcional é uma área da neurociência que visa o desenvolvimento de diversas técnicas para mapear a atividade do sistema nervoso e esteve sob constante desenvolvimento durante as últimas décadas devido à sua grande importância para aplicações clínicas e pesquisa. Técnicas usualmente utilizadas, como imagem por ressonância magnética functional (fMRI) e tomografia por emissão de pósitrons (PET) têm ótima resolução espacial (~ mm), mas uma resolução temporal limitada (~ s), impondo um grande desafio para nossa compreensão a respeito da dinâmica de funções cognitivas mais elevadas, cujas oscilações podem ocorrer em escalas temporais muito mais finas (~ ms). Tal limitação ocorre pelo fato destas técnicas medirem respostas biológicas lentas que são correlacionadas de maneira indireta com a atividade elétrica cerebral. As duas principais técnicas capazes de superar essa limitação são a Eletro- e Magnetoencefalografia (EEG/MEG), que são técnicas não invasivas para medir os campos elétricos e magnéticos no escalpo, respectivamente, gerados pelas fontes elétricas cerebrais. Ambas possuem resolução temporal na ordem de milisegundo, mas tipicalmente uma baixa resolução espacial (~ cm) devido à natureza mal posta do problema inverso eletromagnético. Um imenso esforço vem sendo feito durante as últimas décadas para melhorar suas resoluções espaciais através da incorporação de informação relevante ao problema de outras técnicas de imagens e/ou de vínculos biologicamente inspirados aliados ao desenvolvimento de métodos matemáticos e algoritmos sofisticados. Neste trabalho focaremos em EEG, embora todas técnicas aqui apresentadas possam ser igualmente aplicadas ao MEG devido às suas formas matemáticas idênticas. Em particular, nós exploramos esparsidade como uma importante restrição matemática dentro de uma abordagem Bayesiana chamada Aprendizagem Bayesiana Esparsa (SBL), que permite a obtenção de soluções únicas significativas no problema de reconstrução de fontes. Além disso, investigamos como incorporar diferentes estruturas como graus de liberdade nesta abordagem, que é uma aplicação de esparsidade estruturada e mostramos que é um caminho promisor para melhorar a precisão de reconstrução de fontes em métodos de imagens eletromagnéticos. / Functional Neuroimaging is an area of neuroscience which aims at developing several techniques to map the activity of the nervous system and has been under constant development in the last decades due to its high importance in clinical applications and research. Common applied techniques such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) have great spatial resolution (~ mm), but a limited temporal resolution (~ s), which poses a great challenge on our understanding of the dynamics of higher cognitive functions, whose oscillations can occur in much finer temporal scales (~ ms). Such limitation occurs because these techniques rely on measurements of slow biological responses which are correlated in a complicated manner to the actual electric activity. The two major candidates that overcome this shortcoming are Electro- and Magnetoencephalography (EEG/MEG), which are non-invasive techniques that measure the electric and magnetic fields on the scalp, respectively, generated by the electrical brain sources. Both have millisecond temporal resolution, but typically low spatial resolution (~ cm) due to the highly ill-posed nature of the electromagnetic inverse problem. There has been a huge effort in the last decades to improve their spatial resolution by means of incorporating relevant information to the problem from either other imaging modalities and/or biologically inspired constraints allied with the development of sophisticated mathematical methods and algorithms. In this work we focus on EEG, although all techniques here presented can be equally applied to MEG because of their identical mathematical form. In particular, we explore sparsity as a useful mathematical constraint in a Bayesian framework called Sparse Bayesian Learning (SBL), which enables the achievement of meaningful unique solutions in the source reconstruction problem. Moreover, we investigate how to incorporate different structures as degrees of freedom into this framework, which is an application of structured sparsity and show that it is a promising way to improve the source reconstruction accuracy of electromagnetic imaging methods.
6

Um método iterativo e escalonável para super-resolução de imagens usando a interpolação DCT e representação esparsa. / Iterative and scalable image super-resolution method with DCT interpolation and sparse representation.

Reis, Saulo Roberto Sodré dos 23 April 2014 (has links)
Num cenário em que dispositivos de aquisição de imagens e vídeo possuem recursos limitados ou as imagens disponíveis não possuem boa qualidade, as técnicas de super-resolução (SR) apresentam uma excelente alternativa para melhorar a qualidade das imagens. Nesta tese é apresentada uma proposta para super-resolução de imagem única que combina os benefícios da interpolação no domínio da transformada DCT e a eficiência dos métodos de reconstrução baseados no conceito de representação esparsa de sinais. A proposta busca aproveitar as melhorias já alcançadas na qualidade e eficiência computacional dos principais algoritmos de super-resolução existentes. O método de super-resolução proposto implementa algumas melhorias nas etapas de treinamento e reconstrução da imagem final. Na etapa de treinamento foi incluída uma nova etapa de extração de características utilizando técnicas de aguçamento por máscara de nitidez e construção de um novo dicionário. Esta estratégia busca extrair mais informações estruturais dos fragmentos de baixa e alta resolução do conjunto de treinamento e ao mesmo tempo reduzir o tamanho dos dicionários. Outra importante contribuição foi a inclusão de um processo iterativo e escalonável no algoritmo, reinserindo no conjunto de treinamento e na etapa de reconstrução, uma imagem de alta resolução obtida numa primeira iteração. Esta solução possibilitou uma melhora na qualidade da imagem de alta resolução final utilizando poucas imagens no conjunto de treinamento. As simulações computacionais demonstraram a capacidade do método proposto em produzir imagens com qualidade e com tempo computacional reduzido. / In a scenario in which the acquisition systems have limited resources or available images do not have good quality, the super-resolution (SR) techniques have become an excellent alternative for improving the image quality. In this thesis, we propose a single-image super-resolution (SR) method that combines the benefits of the DCT interpolation and efficiency of sparse representation method for image reconstruction. Also, the proposed method seeks to take advantage of the improvements already achieved in quality and computational efficiency of the existing SR algorithms. The proposed method implements some improvements in the dictionary training and the reconstruction process. A new dictionary was built by using an unsharp mask technique to characteristics extraction. Simultaneously, this strategy aim to extract more structural information of the low resolution and high resolution patches and reduce the dictionaries size. Another important contribution was the inclusion of an iterative and scalable process by reinserting the HR image obtained of first iteration. This solution aim to improve the quality of the final HR image using a few images in the training set. The results have demonstrated the ability of the proposed method to produce high quality images with reduced computational time.
7

Um método iterativo e escalonável para super-resolução de imagens usando a interpolação DCT e representação esparsa. / Iterative and scalable image super-resolution method with DCT interpolation and sparse representation.

Saulo Roberto Sodré dos Reis 23 April 2014 (has links)
Num cenário em que dispositivos de aquisição de imagens e vídeo possuem recursos limitados ou as imagens disponíveis não possuem boa qualidade, as técnicas de super-resolução (SR) apresentam uma excelente alternativa para melhorar a qualidade das imagens. Nesta tese é apresentada uma proposta para super-resolução de imagem única que combina os benefícios da interpolação no domínio da transformada DCT e a eficiência dos métodos de reconstrução baseados no conceito de representação esparsa de sinais. A proposta busca aproveitar as melhorias já alcançadas na qualidade e eficiência computacional dos principais algoritmos de super-resolução existentes. O método de super-resolução proposto implementa algumas melhorias nas etapas de treinamento e reconstrução da imagem final. Na etapa de treinamento foi incluída uma nova etapa de extração de características utilizando técnicas de aguçamento por máscara de nitidez e construção de um novo dicionário. Esta estratégia busca extrair mais informações estruturais dos fragmentos de baixa e alta resolução do conjunto de treinamento e ao mesmo tempo reduzir o tamanho dos dicionários. Outra importante contribuição foi a inclusão de um processo iterativo e escalonável no algoritmo, reinserindo no conjunto de treinamento e na etapa de reconstrução, uma imagem de alta resolução obtida numa primeira iteração. Esta solução possibilitou uma melhora na qualidade da imagem de alta resolução final utilizando poucas imagens no conjunto de treinamento. As simulações computacionais demonstraram a capacidade do método proposto em produzir imagens com qualidade e com tempo computacional reduzido. / In a scenario in which the acquisition systems have limited resources or available images do not have good quality, the super-resolution (SR) techniques have become an excellent alternative for improving the image quality. In this thesis, we propose a single-image super-resolution (SR) method that combines the benefits of the DCT interpolation and efficiency of sparse representation method for image reconstruction. Also, the proposed method seeks to take advantage of the improvements already achieved in quality and computational efficiency of the existing SR algorithms. The proposed method implements some improvements in the dictionary training and the reconstruction process. A new dictionary was built by using an unsharp mask technique to characteristics extraction. Simultaneously, this strategy aim to extract more structural information of the low resolution and high resolution patches and reduce the dictionaries size. Another important contribution was the inclusion of an iterative and scalable process by reinserting the HR image obtained of first iteration. This solution aim to improve the quality of the final HR image using a few images in the training set. The results have demonstrated the ability of the proposed method to produce high quality images with reduced computational time.
8

[pt] LAWIE: DECONVOLUÇÃO EM PICOS ESPARSOS USANDO O LASSO E FILTRO DE WIENER / [en] LAWIE: SPARSE-SPIKE DECONVOLUTION WITH LASSO AND WIENER FILTER

FELIPE JORDAO PINHEIRO DE ANDRADE 06 November 2020 (has links)
[pt] Este trabalho propõe um algoritmo para o problema da deconvolução sísmica em picos esparsos. Intitulado LaWie, este algoritmo é baseado na combinação do Least Absolute Shrinkage and Selection Operator (LASSO) e a modelagem de blocos usada no filtro de Wiener. A deconvolução é feita traço a traço para estimar o perfil de refletividade e a wavelet original que deu origem as amplitudes sísmicas. Este trabalho apresenta o resultado do método no dataset sintético do Marmousi2, onde existe um ground truth para comparações objetivas. Além disso, também apresenta os resultados no dataset real Netherlands Offshore F3 Block e mostra a aplicabilidade do algoritmo proposto para não apenas delinear o perfil de refletividades como também para ressaltar características como fraturas neste dado. / [en] This work proposes an algorithm for solving the seismic sparse-spike deconvolution problem. Entitled LaWie, this algorithm is based on the combination of Least Absolute Shrinkage and Selection Operator (LASSO) and the block modeling used in the Wiener filter. Deconvolution is done trace by trace to estimate the reflectivity profile and the convolution wavelet that originated the seismic amplitudes. This work presents the results in the synthetic dataset of Marmousi2, where there is a ground truth for objective comparisons. Also, this work presents the results in a real dataset, Netherlands Offshore F3 Block, and shows the applicability of the proposed algorithm to outline the reflectivity profile and highlight characteristics such as fractures in this data.
9

[pt] MODELAGEM ESPARSA E SUPERTRAÇOS PARA DECONVOLUÇÃO E INVERSÃO SÍSMICAS / [en] SPARSE MODELING AND SUPERTRACES FOR SEISMIC DECONVOLUTION AND INVERSION

RODRIGO COSTA FERNANDES 11 May 2020 (has links)
[pt] Dados de amplitude sísmica compõem o conjunto de insumos do trabalho de interpretação geofísica. À medida que a qualidade dos sensores sísmicos evoluem, há aumento importante tanto na resolução quanto no espaço ocupado para armazenamento. Neste contexto, as tarefas de deconvolução e inversão sísmicas se tornam mais custosas, em tempo de processamento ou em espaço ocupado, em memória principal ou secundária. Partindo do pressuposto de que é possível assumir, por aproximação, que traços de amplitudes sísmicas são o resultado da fusão entre um conteúdo oscilatório – um pulso gerado por um tipo de explosão, em caso de aquisição marítima – e a presença esparsa de contrastes de impedância e variação de densidade de rocha, pretende-se, neste trabalho, apresentar contribuições quanto à forma de realização de duas atividades em interpretação geofísica: a deconvolução e a inversão de refletividades em picos esparsos. Tomando como inspiração trabalhos em compressão volumétrica 3D e 4D, modelagem esparsa, otimização em geofísica, segmentação de imagens e visualização científica, apresenta-se, nesta tese, um conjunto de métodos que buscam estruturas fundamentais e geradoras das amplitudes: (i) uma abordagem para segmentação e seleção de traços sísmicos como representantes de todo o dado, (ii) uma abordagem para separação de amplitudes em ondaleta e picos esparsos de refletividade via deconvolução e (iii) uma outra para confecção de um operador linear – um dicionário – capaz de representar, parcial e aproximadamente, variações no conteúdo oscilatório – emulando alguns efeitos do subsolo –, com o qual é possível realizar uma inversão de refletividades. Por fim, apresentase um conjunto de resultados demonstrando a viabilidade das abordagens, o ganho eventual se aplicadas – incluindo a possibilidade de compressão – e a abertura de oportunidades de trabalhos futuros mesclando geofísica e computação. / [en] Seismic amplitude data are part of the input in a geophysical interpretation pipeline. As seismic sensors evolve, resolution and occupied storage space grows. In this context, tasks as seismic deconvolution and inversion become more expensive, in processing time or in – main or secondary – memory. Assuming that, approximately, seismic amplitude traces result from a fusion between an oscillatory content – a pulse generated by a kind of explosion, in the case of marine acquisition – and the sparse presence of impedance constrasts and rock density variation, this work presents contributions to the way of doing two geophysical interpretation activities: deconvolution and inversion, both targeting sparse-spike refletivity extraction. Inspired by works in 3D and 4D volumetric compression, sparse modeling, optimization applied to geophysics, image segmentation and scientific visualization, this thesis presents a set of methods that try to fetch fundamental features that generate amplitude data: (i) an approach for seismic traces segmentation and selection, electing them as representatives of the whole data, (ii) an enhancement of an approach for separation of amplitudes into wavelet and sparse-spike reflectivities via deconvolution, and (iii) a way to generate a linear operator – a dictionary – partially and approximately capable of representing variations on the wavelet shape, emulating some effects of the subsoil, from which is possible to accomplish a reflectivity inversion. By the end, it is presented a set of results that demonstrate the viability of such approaches, the possible gain when they are applied – including compression – and some opportunities for future works mixing geophysics and computer science.
10

Arrays de microfones para medida de campos acústicos. / Microphone arrays for acoustic field measurements.

Ribeiro, Flávio Protásio 23 January 2012 (has links)
Imageamento acústico é um problema computacionalmente caro e mal-condicionado, que envolve estimar distribuições de fontes com grandes arranjos de microfones. O método clássico para imageamento acústico utiliza beamforming, e produz a distribuição de fontes de interesse convoluída com a função de espalhamento do arranjo. Esta convolução borra a imagem ideal, significativamente diminuindo sua resolução. Convoluções podem ser evitadas com técnicas de ajuste de covariância, que produzem estimativas de alta resolução. Porém, estas têm sido evitadas devido ao seu alto custo computacional. Nesta tese, admitimos um arranjo bidimensional com geometria separável, e desenvolvemos transformadas rápidas para acelerar imagens acústicas em várias ordens de grandeza. Estas transformadas são genéricas, e podem ser aplicadas para acelerar beamforming, algoritmos de deconvolução e métodos de mínimos quadrados regularizados. Assim, obtemos imagens de alta resolução com algoritmos estado-da-arte, mantendo baixo custo computacional. Mostramos que arranjos separáveis produzem estimativas competitivas com as de geometrias espirais logaritmicas, mas com enormes vantagens computacionais. Finalmente, mostramos como estender este método para incorporar calibração, um modelo para propagação em campo próximo e superfícies focais arbitrárias, abrindo novas possibilidades para imagens acústicas. / Acoustic imaging is a computationally intensive and ill-conditioned inverse problem, which involves estimating high resolution source distributions with large microphone arrays. The classical method for acoustic imaging consists of beamforming, and produces the source distribution of interest convolved with the array point spread function. This convolution smears the image of interest, significantly reducing its effective resolution. Convolutions can be avoided with covariance fitting methods, which have been known to produce robust high-resolution estimates. However, these have been avoided due to prohibitive computational costs. In this thesis, we assume a 2D separable array geometry, and develop fast transforms to accelerate acoustic imaging by several orders of magnitude with respect to previous methods. These transforms are very generic, and can be applied to accelerate beamforming, deconvolution algorithms and regularized least-squares solvers. Thus, one can obtain high-resolution images with state-of-the-art algorithms, while maintaining low computational cost. We show that separable arrays deliver accuracy competitive with multi-arm spiral geometries, while producing huge computational benefits. Finally, we show how to extend this approach with array calibration, a near-field propagation model and arbitrary focal surfaces, opening new and exciting possibilities for acoustic imaging.

Page generated in 0.0244 seconds