• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contributions à l'apprentissage statistique dans les modèles parcimonieux

Alquier, Pierre 06 December 2013 (has links) (PDF)
Ce mémoire d'habilitation a pour objet diverses contributions à l'estimation et à l'apprentissage statistique dans les modeles en grande dimension, sous différentes hypothèses de parcimonie. Dans une première partie, on introduit la problématique de la statistique en grande dimension dans un modèle générique de régression linéaire. Après avoir passé en revue les différentes méthodes d'estimation populaires dans ce modèle, on présente de nouveaux résultats tirés de (Alquier & Lounici 2011) pour des estimateurs agrégés. La seconde partie a essentiellement pour objet d'étendre les résultats de la première partie à l'estimation de divers modèles de séries temporelles (Alquier & Doukhan 2011, Alquier & Wintenberger 2013, Alquier & Li 2012, Alquier, Wintenberger & Li 2012). Enfin, la troisième partie présente plusieurs extensions à des modèles non param\étriques ou à des applications plus spécifiques comme la statistique quantique (Alquier & Biau 2013, Guedj & Alquier 2013, Alquier, Meziani & Peyré 2013, Alquier, Butucea, Hebiri, Meziani & Morimae 2013, Alquier 2013, Alquier 2008). Dans chaque section, des estimateurs sont proposés, et, aussi souvent que possible, des inégalités oracles optimales sont établies.
2

Représentation parcimonieuse et procédures de tests multiples : application à la métabolomique / Sparse representation and multiple testing procedures : application to metabolimics

Tardivel, Patrick 24 November 2017 (has links)
Considérons un vecteur gaussien Y de loi N (m,sigma²Idn) et X une matrice de dimension n x p avec Y observé, m inconnu, Sigma et X connus. Dans le cadre du modèle linéaire, m est supposé être une combinaison linéaire des colonnes de X. En petite dimension, lorsque n ≥ p et que ker (X) = 0, il existe alors un unique paramètre Beta* tel que m = X Beta* ; on peut alors réécrire Y sous la forme Y = X Beta* + Epsilon. Dans le cadre du modèle linéaire gaussien en petite dimension, nous construisons une nouvelle procédure de tests multiples contrôlant le FWER pour tester les hypothèses nulles Beta*i = 0 pour i appartient à [[1,p]]. Cette procédure est appliquée en métabolomique au travers du programme ASICS qui est disponible en ligne. ASICS permet d'identifier et de quantifier les métabolites via l'analyse des spectres RMN. En grande dimension, lorsque n < p on a ker (X) ≠ 0, ainsi le paramètre Beta* décrit précédemment n'est pas unique. Dans le cas non bruité lorsque Sigma = 0, impliquant que Y = m, nous montrons que les solutions du système linéaire d'équations Y = X Beta avant un nombre de composantes non nulles minimales s'obtiennent via la minimisation de la "norme" lAlpha avec Alpha suffisamment petit. / Let Y be a Gaussian vector distributed according to N (m,sigma²Idn) and X a matrix of dimension n x p with Y observed, m unknown, sigma and X known. In the linear model, m is assumed to be a linear combination of the columns of X In small dimension, when n ≥ p and ker (X) = 0, there exists a unique parameter Beta* such that m = X Beta*; then we can rewrite Y = Beta* + Epsilon. In the small-dimensional linear Gaussian model framework, we construct a new multiple testing procedure controlling the FWER to test the null hypotheses Beta*i = 0 for i belongs to [[1,p]]. This procedure is applied in metabolomics through the freeware ASICS available online. ASICS allows to identify and to qualify metabolites via the analyse of RMN spectra. In high dimension, when n < p we have ker (X) ≠ 0 consequently the parameter Beta* described above is no longer unique. In the noiseless case when Sigma = 0, implying thus Y = m, we show that the solutions of the linear system of equation Y = X Beta having a minimal number of non-zero components are obtained via the lalpha with alpha small enough.

Page generated in 0.0722 seconds