• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Álgebras estandarmente estratificadas e álgebras quase-hereditárias / Standardly stratified algebras and quasi-hereditary algebras

Cadavid Salazar, Paula Andrea 28 November 2007 (has links)
Sejam K um corpo algebricamente fechado, A uma K-álgebra básica conexa de dimensão finita sobre K e ê=(e_1,e_2,... ,e_n) um conjunto completo de idempotentes ortogonais, primitivos e ordenados de A. O conjunto dos módulos estandares é o conjunto Delta ={ D_1, ..., D_n }, onde D_i é o quociente maximal do A-módulo projetivo P_i com fatores de composição simples S_j, com j\\leq i, F(Delta) é a subcategoria plena de mod A dos módulos têm uma Delta-filtração. Se A_A esta em F(Delta) diz-se que A é uma álgebra estandarmente estratificada. Se, além disso, para cada elemento em Delta vale que End_A(D_i) é isomorfo a K diz-se que A é uma álgebra álgebra quase-hereditária. Nesta dissertação estudamos as propriedades de F(Delta), especialmente quando A é estandarmente estratificada, e algumas condições necessárias e suficientes para que A seja quase-hereditária. / Let K be an algebraically closed field, A a basic, connected, finite dimensional K-algebra and ê=(e_1,e_2,...,e_n) a complete set of ordered primitive orthogonal idempotents of A. The set of standard modules is the set Delta={D_1, ..., D_n}, where D_i is the maximal factor submodule of P_i whose composition factors are isomorphic to S_j, for j\\leq i. We denote by F(Delta) the full subcategory of mod A containing the modules which are filtered by modules in Delta. If iA_A is in F(Delta) we say that A is standardly stratified. Moreover, if End_A(D_i) is isomorphic with K, for each element in Delta we say that A is quasi hereditary. In this work we study the properties of the category F(Delta), especially when A is stardardly stratified, and some necessary and sufficient conditions to A be quasi hereditary.
2

Álgebras estandarmente estratificadas e álgebras quase-hereditárias / Standardly stratified algebras and quasi-hereditary algebras

Paula Andrea Cadavid Salazar 28 November 2007 (has links)
Sejam K um corpo algebricamente fechado, A uma K-álgebra básica conexa de dimensão finita sobre K e ê=(e_1,e_2,... ,e_n) um conjunto completo de idempotentes ortogonais, primitivos e ordenados de A. O conjunto dos módulos estandares é o conjunto Delta ={ D_1, ..., D_n }, onde D_i é o quociente maximal do A-módulo projetivo P_i com fatores de composição simples S_j, com j\\leq i, F(Delta) é a subcategoria plena de mod A dos módulos têm uma Delta-filtração. Se A_A esta em F(Delta) diz-se que A é uma álgebra estandarmente estratificada. Se, além disso, para cada elemento em Delta vale que End_A(D_i) é isomorfo a K diz-se que A é uma álgebra álgebra quase-hereditária. Nesta dissertação estudamos as propriedades de F(Delta), especialmente quando A é estandarmente estratificada, e algumas condições necessárias e suficientes para que A seja quase-hereditária. / Let K be an algebraically closed field, A a basic, connected, finite dimensional K-algebra and ê=(e_1,e_2,...,e_n) a complete set of ordered primitive orthogonal idempotents of A. The set of standard modules is the set Delta={D_1, ..., D_n}, where D_i is the maximal factor submodule of P_i whose composition factors are isomorphic to S_j, for j\\leq i. We denote by F(Delta) the full subcategory of mod A containing the modules which are filtered by modules in Delta. If iA_A is in F(Delta) we say that A is standardly stratified. Moreover, if End_A(D_i) is isomorphic with K, for each element in Delta we say that A is quasi hereditary. In this work we study the properties of the category F(Delta), especially when A is stardardly stratified, and some necessary and sufficient conditions to A be quasi hereditary.
3

Singular Milnor Fibrations / Fibrações de Milnor singulares

Ribeiro, Maico Felipe Silva 28 February 2018 (has links)
In this work we present the most recent developments in the direction of local fibrations structures of analytic singularities. Using techniques and tools from stratification theory we prove structural theorems in the stratified sense, which will be called singular Milnor tube fibration and Milnor-Hamm sphere fibration. In addition, we present algorithms with the purpose of creating a large number of examples in this new setting and compare our results obtained with the current ones found in the literature. Our results generalize all previous result in both cases: in the classical and in the stratified ones. / Neste trabalho apresentamos os mais recentes desenvolvimentos na direção de estruturas de fibrações locais de singularidades analíticas. Usando técnicas e ferramentas da teoria de estratificação, provamos alguns teoremas estruturais no sentido estratificado, os quais serão chamados fibração singular de Milnor sobre o tubo e fibração de Milnor-Hamm sobre a esfera. Além disso, apresentamos algoritmos com o intuito de criar uma ampla variedade de exemplos e comparamos nossos resultados com os atuais encontrados na literatura. Nossos resultados generalizam todos os previamente existentes tanto no caso clássico, quanto no sentido estratificado.
4

Singular Milnor Fibrations / Fibrações de Milnor singulares

Maico Felipe Silva Ribeiro 28 February 2018 (has links)
In this work we present the most recent developments in the direction of local fibrations structures of analytic singularities. Using techniques and tools from stratification theory we prove structural theorems in the stratified sense, which will be called singular Milnor tube fibration and Milnor-Hamm sphere fibration. In addition, we present algorithms with the purpose of creating a large number of examples in this new setting and compare our results obtained with the current ones found in the literature. Our results generalize all previous result in both cases: in the classical and in the stratified ones. / Neste trabalho apresentamos os mais recentes desenvolvimentos na direção de estruturas de fibrações locais de singularidades analíticas. Usando técnicas e ferramentas da teoria de estratificação, provamos alguns teoremas estruturais no sentido estratificado, os quais serão chamados fibração singular de Milnor sobre o tubo e fibração de Milnor-Hamm sobre a esfera. Além disso, apresentamos algoritmos com o intuito de criar uma ampla variedade de exemplos e comparamos nossos resultados com os atuais encontrados na literatura. Nossos resultados generalizam todos os previamente existentes tanto no caso clássico, quanto no sentido estratificado.

Page generated in 0.1015 seconds