Spelling suggestions: "subject:"quasihereditary algebra"" "subject:"leasthereditary algebra""
1 |
Álgebras estandarmente estratificadas e álgebras quase-hereditárias / Standardly stratified algebras and quasi-hereditary algebrasCadavid Salazar, Paula Andrea 28 November 2007 (has links)
Sejam K um corpo algebricamente fechado, A uma K-álgebra básica conexa de dimensão finita sobre K e ê=(e_1,e_2,... ,e_n) um conjunto completo de idempotentes ortogonais, primitivos e ordenados de A. O conjunto dos módulos estandares é o conjunto Delta ={ D_1, ..., D_n }, onde D_i é o quociente maximal do A-módulo projetivo P_i com fatores de composição simples S_j, com j\\leq i, F(Delta) é a subcategoria plena de mod A dos módulos têm uma Delta-filtração. Se A_A esta em F(Delta) diz-se que A é uma álgebra estandarmente estratificada. Se, além disso, para cada elemento em Delta vale que End_A(D_i) é isomorfo a K diz-se que A é uma álgebra álgebra quase-hereditária. Nesta dissertação estudamos as propriedades de F(Delta), especialmente quando A é estandarmente estratificada, e algumas condições necessárias e suficientes para que A seja quase-hereditária. / Let K be an algebraically closed field, A a basic, connected, finite dimensional K-algebra and ê=(e_1,e_2,...,e_n) a complete set of ordered primitive orthogonal idempotents of A. The set of standard modules is the set Delta={D_1, ..., D_n}, where D_i is the maximal factor submodule of P_i whose composition factors are isomorphic to S_j, for j\\leq i. We denote by F(Delta) the full subcategory of mod A containing the modules which are filtered by modules in Delta. If iA_A is in F(Delta) we say that A is standardly stratified. Moreover, if End_A(D_i) is isomorphic with K, for each element in Delta we say that A is quasi hereditary. In this work we study the properties of the category F(Delta), especially when A is stardardly stratified, and some necessary and sufficient conditions to A be quasi hereditary.
|
2 |
Álgebras estandarmente estratificadas e álgebras quase-hereditárias / Standardly stratified algebras and quasi-hereditary algebrasPaula Andrea Cadavid Salazar 28 November 2007 (has links)
Sejam K um corpo algebricamente fechado, A uma K-álgebra básica conexa de dimensão finita sobre K e ê=(e_1,e_2,... ,e_n) um conjunto completo de idempotentes ortogonais, primitivos e ordenados de A. O conjunto dos módulos estandares é o conjunto Delta ={ D_1, ..., D_n }, onde D_i é o quociente maximal do A-módulo projetivo P_i com fatores de composição simples S_j, com j\\leq i, F(Delta) é a subcategoria plena de mod A dos módulos têm uma Delta-filtração. Se A_A esta em F(Delta) diz-se que A é uma álgebra estandarmente estratificada. Se, além disso, para cada elemento em Delta vale que End_A(D_i) é isomorfo a K diz-se que A é uma álgebra álgebra quase-hereditária. Nesta dissertação estudamos as propriedades de F(Delta), especialmente quando A é estandarmente estratificada, e algumas condições necessárias e suficientes para que A seja quase-hereditária. / Let K be an algebraically closed field, A a basic, connected, finite dimensional K-algebra and ê=(e_1,e_2,...,e_n) a complete set of ordered primitive orthogonal idempotents of A. The set of standard modules is the set Delta={D_1, ..., D_n}, where D_i is the maximal factor submodule of P_i whose composition factors are isomorphic to S_j, for j\\leq i. We denote by F(Delta) the full subcategory of mod A containing the modules which are filtered by modules in Delta. If iA_A is in F(Delta) we say that A is standardly stratified. Moreover, if End_A(D_i) is isomorphic with K, for each element in Delta we say that A is quasi hereditary. In this work we study the properties of the category F(Delta), especially when A is stardardly stratified, and some necessary and sufficient conditions to A be quasi hereditary.
|
3 |
On Stratified Algebras and Lie SuperalgebrasFrisk, Anders January 2007 (has links)
<p>This thesis, consisting of three papers and a summary, studies properties of stratified algebras and representations of Lie superalgebras.</p><p>In Paper I we give a characterization when the Ringel dual of an SSS-algebra is properly stratified.</p><p>We show that for an SSS-algebra, whose Ringel dual is properly stratified, there is a (generalized) tilting module which allows one to compute the finitistic dimension of the SSS-algebra, and moreover, it gives rise to a new covariant Ringel-type duality.</p><p>In Paper II we give a characterization of standardly stratified algebras in terms of certain filtrations of (left or right) projective modules, generalizing the corresponding theorem of V. Dlab. We extend the notion of Ringel duality to standardly stratified algebras and estimate their finitistic dimension in terms of endomorphism algebras of standard modules.</p><p>Paper III deals with the queer Lie superalgebra and the corresponding BGG-category O. We show that the typical blocks correspond to standardly stratified algebras, and we generalize Kostant's Theorem to the queer Lie superalgebra.</p>
|
4 |
On Stratified Algebras and Lie SuperalgebrasFrisk, Anders January 2007 (has links)
This thesis, consisting of three papers and a summary, studies properties of stratified algebras and representations of Lie superalgebras. In Paper I we give a characterization when the Ringel dual of an SSS-algebra is properly stratified. We show that for an SSS-algebra, whose Ringel dual is properly stratified, there is a (generalized) tilting module which allows one to compute the finitistic dimension of the SSS-algebra, and moreover, it gives rise to a new covariant Ringel-type duality. In Paper II we give a characterization of standardly stratified algebras in terms of certain filtrations of (left or right) projective modules, generalizing the corresponding theorem of V. Dlab. We extend the notion of Ringel duality to standardly stratified algebras and estimate their finitistic dimension in terms of endomorphism algebras of standard modules. Paper III deals with the queer Lie superalgebra and the corresponding BGG-category O. We show that the typical blocks correspond to standardly stratified algebras, and we generalize Kostant's Theorem to the queer Lie superalgebra.
|
Page generated in 0.0749 seconds