• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 18
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Analysis of the microstructure transformation (wel formation) in pearlitic steel used in relevant engineering wear systems. / Análise da transformação microestrutural (formação da camada branca) em aço perlítico utilizado em relevantes sistemas de desgaste em engenharia.

Juan Ignacio Pereira Agudelo 14 May 2018 (has links)
In this thesis, the behavior of pearlitic steel was characterized under controlled wear conditions in the laboratory and service conditions in two ore mining stages, comminution and transportation. The thesis consists in three experimental chapters, divided according to the tribosystems analyzed. On all the chapters Electro Microscopy techniques for the microstructural analysis were employed. Scanning Electron Microscopy (SEM), Focused Ion Beam (FIB-SEM), Electron Backscatter Diffraction (EBSD) and Transmission Electron Microscopy (TEM) were used. The first experimental chapter shows the analysis of the pearlite under abrasive wear with loose abrasive particles in multi-events conditions. The sample was taken from Semi-Autogenous Grinding mills (SAG) and experimental simulation was carried out in laboratory using the Dry Sand Rubber Wheel Abrasion Test (DSRW). The results show a polycrystalline layer formation in both cases, characterized by ultra-fine grains of ferrite in the layer closer to the surface. It was also concluded that the DSRW can simulate the wear produced on field (superficial and microstructural features) in conditions of higher normal load than recommended by the ASTM Standard G65. The second experimental chapter explores the characterization of the microstructure after the indenter pass in scratch test using two conditions of normal load applied and five sequences of scratch. The microstructural analysis shows the formation of two subsuperficial layers identified by the level of the microstructural alterations. In the subsuperficial layer (close to the surface), the formation of new ultra-fine grains of ferrite was observed. A second layer was observed deeper in the sample and denominated as layer of the microstructure transition, characterized by the combination of deformed (reduction of the interlamellar spacing) and pearlite colonies not affected plastically by the mechanical loading. On this layer, the crystallographic texture in RD // in samples tested at 4 N (normal load) and one-pass scratch was determined. Later, on this chapter, the microstructure in a ground rail (industrial procedure characterized as a multi-event scratch test) was analyzed. Two grinding conditions were used for the analysis with variation of the grinding linear speed and load on the grinding stones (discs). The combination of low grinding speed and high load promotes a higher deformed layer formation beneath the patch zone and low randomized orientation of the pearlite colonies. Finally, in the third experimental chapter, the pearlitic characterization was concluded with the study of samples of railway wheel and rail under wear in service and Rolling Contact Fatigue (RCF) in laboratory. The laboratorial simulation was carried out using the twin-disc rolling contact tribometer with a variation of number of cycles. The characterization of railway wheel shows that the WEL is characterized by levels of breaking and aligned cementite and zones with dissolution of the carbon atom in the ferrite to form the supersaturated carbon ferrite. The polycrystalline ferrite formation (ultra-fine grains) in the sub-superficial layer and it was identified a preferential orientation of RD // in the layer of microstructural transition. The results of the laboratory test show surface crack nucleation and propagation at low angle in the more severe deformed layer. The microstructure of the layer consists in polycrystalline ferrite and the cementite dissolution. / Nesta tese foi caracterizado o comportamento do aço perlítico em condições controladas de desgaste em laboratório e em serviço em dois estágios do processo de mineração de minério, cominução e transporte ferroviário. A tese consiste em três capítulos experimentais divididos segundo o tribosistema analisado. Em todos os capítulos do trabalho foi utilizada a técnica de microscopia eletrônica para análise microestrutural. Foi utilizado Microscopia eletrônica de varredura (MEV), Focused Ion Beam (FIB-SEM), Electron Backscatter Diffraction (EBSD) e Microscopia eletrônica de transmissão (MET). O primeiro capítulo experimental mostra a análise da perlita in condições de desgaste abrasivo com partículas soltas em eventos múltiplos. As amostras foram tiradas de um moinho semi-autógeno (SAG) e realizada uma simulação experimental do desgaste em condições controladas usando o tribômetro de roda de borracha (RWAT). Os resultados mostraram a formação de camada branca em ambas as condições de análise, consistindo em uma camada poli cristalina caracterizada pela formação de grãos ultrafinos na camada mais próxima da superfície de desgaste. Também foi concluído que a roda de borracha pode simular o desgaste produzido nos moinhos SAG tanto nas características superficiais quanto microestruturais em condições de maior severidade as comumente utilizadas na norma ASTM G65 (procedimento B). O Segundo capítulo experimental explora a caracterização da microestrutura depois da passagem do endentador no ensaio de riscamento (scratch test) utilizando duas condições de carga normal aplicada e 5 sequências de riscamento. A análise microestrutural mostrou a formação de duas camadas subsuperficiais identificadas pelo nível de alteração microestrutural. Na camada mais próxima da superfície de desgaste foi observada a formação de grãos ultrafinos de ferrita. A segunda camada identificada mais profundamente na amostra, denominada como camada de transição, é caracterizada pela combinação de colônias deformadas (redução do espaçamento interlamelar) e camadas não afetadas pelos esforços produzidos no contato. Nesta camada foi determinada a texturização em direção RD // nas amostras testadas a 4 N (carga normal aplicada) e uma passada. Posteriormente à análise de riscamento foi caracterizada a microestrutura de uma amostra tirada de um trilho esmerilhado (processo industrial que pode ser considerado como aplicação do ensaio de riscamento). Foram consideradas duas condições de esmerilhamento com variação de velocidade de esmerilhamento (deslocamento linear do veículo esmerilhador) e potência dos motores dos rebolos usada no procedimento. A combinação de baixa velocidade de esmerilhamento e alta potência nos motores controladores dos rebolos promoveu uma grande deformação nas camadas subsuperficiais na região de contato e uma baixa aleatoriedade das orientações cristalográficas das colônias de perlita. Finalmente, no capítulo três, a caracterização da microestrutura perlitica foi finalizada com o estudo de amostras de roda e trilho em condições de desgaste em campo e de Rolling Contact Fatigue (RCF) em ensaios de laboratório. A simulação experimental foi realizada utilizando o tribômetro twin-disc rolling (configuração disco-disco) com variação do número de ciclos. A caracterização da roda ferroviária mostrou a formação da camada branca caracterizada por níveis de cementita fraturada e alinhada em direção do movimento de rolamento/deslizamento com áreas de dissolução do átomo de carbono na ferrita formando uma ferrita supersaturada. Foi identificado a formação de policristais de ferrita (grãos ultrafinos) na camada mais superficial e uma orientação preferencial RD // na camada de transição. Os resultados dos ensaios de laboratório mostraram a nucleação de trincas superficiais se propagando a baixo ângulo na camada branca. A transformação microestrutural dessa camada após ensaios de laboratório consiste em policristais de ferrita e dissolução da cementita.
12

Studium fyzikálně-chemických vlastností povrchově modifikovaného oxidu wolframu / Studium fyzikálně-chemických vlastností povrchově modifikovaného oxidu wolframu

Polášek, Jan January 2016 (has links)
This work can be divided into two parts. In the first part, we examine possibilities of preparation of monocrystalline tungsten and tungsten oxide nanoclusters by means of magnetron sputtering with gas aggregation. Clusters are prepared in the non-reactive (Ar) and reactive (Ar + O2) atmosphere and heated after the deposition or during the flight by IR radiation. Influence of oxygen in the aggre- gation process was described and possibilities of generating crystalline tungsten and tungsten oxide clusters were found. In the second part, we study reactivity of tungsten oxide layers, pure and doped with rare metals (Pt, Au), deposited on the silicon wafer and etched carbon, towards partial methanol oxidation. Influence of carbon substrate and metal doppants on reactivity was found and described, along with mofrological and chemical changes that occurs in the sample during the proces. 1
13

Osseointegration of Temporary Anchorage Devices Using Recombinant Human Bone Morphogenetic Protein-2

Cruz, Erin E 01 May 2010 (has links) (PDF)
Over the past 5 years, the use of titanium implants as temporary anchorage devices (TADs) has become an important tool in clinical orthodontic practices. The use of TADs have provided orthodontists a way of moving teeth against fixed objects rather than against the surrounding teeth, which tend to counteract desired motion. At present, viable attachment of TADs involves direct insertion through gingival tissue and piercing of the bone. Surface modifications such as sandblasted and acid-etched treatment or bone morphogenetic protein surface treatment, however, can be applied to the TADs to promote enhanced osseointegration, thereby allowing the TADs to serve as stable anchors while avoiding bone puncture. In this study, a comparison was made between sandblasted/acid-etched TADs and sandblasted/acid-etched/recombinant human bone morphogenetic protein-2 (rhBMP-2) treated TADs to determine whether rhBMP-2 promotes enhanced osseointegration. A total of 10 rats (4 controls and 6 treated with rhBMP-2) were used in the study, with 1 TAD placed on the skull of each rat. At the end of 6 weeks, the animals were euthanized by carbon dioxide asphyxiation, and bone blocks, each containing a TAD, were prepared for histological examination and biomechanical characterization. The results of this study showed that TADs treated with rhBMP-2 had greater bone formation at the bone-implant interface and an increase in total implant stability.
14

Systém vyhodnocování pro stopový detektor v pevné fázi / Measurement System for Etched Track Detector

Galbavý, Juraj January 2017 (has links)
The aim of this thesis is to design an algorithm for an automatic track counting of an image of etched track detector made of CR-39 polymer. Tracks are produced by alpha particles. Chemically etched detector is imaged using a microscope resulting in 64 images of segments on the surface of the detector. Circle shaped tracks in the images have to be detected and counted. This thesis evaluates the utilization of circle hough transform for circle detection. The final software should automate a detector track counting and should also account for defects in the image and contamination of detector surface. The software will produce a measurement report with a total track count in each segment.
15

Modified track-etched membranes using photocatalytic semiconductors for advanced oxidation water treatment processes

Rossouw, Arnoux 03 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: The purpose of this study was to develop modi ed tract-etched membranes using nanocomposite TiO2 for advanced water treatment processes. Photocatalytic oxidation and reduction reactions take place on TiO2 surfaces under UV light irradiation, therefore sunlight and even normal indoor lighting could be utilised to achieve this effect. In membrane ltration, caking is a major problem, by enhancing the anti-fouling properties of photocatalysts to mineralise organic compounds the membrane life and e ciency can be improved upon. In this study the rst approach in nanocomposite membrane development was to directly modify the surface of polyethylenetherephthalate (PET) track-etched membranes (TMs) with titanium dioxide (TiO2) using inverted cylindrical magnetron sputtering (ICMS) for TiO2 thin lm deposition. The second approach was rst to thermally evaporate silver (Ag) over the entire TM surface, followed by sputtering TiO2 over the silver-coated TM. As a result a noble metal-titania nanocomposite thin lm layer is produced on top of the TM surface with both self-cleaning and superhydrophilic properties. Reactive inverted cylindrical magnetron sputtering is a physical vapour deposition method, where material is separated from a target using high energy ions and then re-assimilated on a substrate to grow thin lms. Argon gas is introduced simultaneously into the deposition chamber along with O2 (the reactive gas) to form TiO2. The photocatalytic activity and other lm properties, such as crystallinity can be in uenced by changing the sputtering power, chamber pressure, target-to-substrate distance, substrate temperature, sputtering gas composition and ow rate. These characteristics make sputtering the perfect tool for the preparation of di erent kinds of TiO2 lms and nanostructures for photocatalysis. In this work, the utilisation of ICMS to prepare photocatalytic TiO2 thin lms deposited on track-etched membranes was studied in detail with emphasis on bandgap reduction and TM surface regeneration. Nanostructured TiO2 photocatalysts were prepared through template directed deposition on track-etched membrane substrates by exploiting the good qualities of ICMS. The TiO2-TM as well as Ag-TiO2-TM thin lms were thoroughly characterised. ICMS prepared TiO2 lms were shown to exhibit good photocatalytic activities. However, the nanocomposite Ag-TiO2 thin lms were identi ed to be a much better choice than TiO2 thin lms on their own. Finally a clear enhancement in the photocatalytic activity was achieved by forming the Ag-TiO2 nanocomposite TMs. This was evident from the band-gap improvement from 3.05 eV of the TiO2 thin lms to the 2.76 eV of the Ag-TiO2 thin lms as well as the superior surface regenerative properties of the Ag-TiO2-TMs. / AFRIKAANSE OPSOMMING: Die doel van hierdie studie was om verbeterde baan-ge etste membrane (BMe) met behulp van nano-saamgestelde titaandioksied (TiO2) vir gevorderde water behandeling prosesse te ontwikkel. Fotokatalitiese oksidasie- en reduksie reaksies vind plaas op die TiO2 oppervlaktes onder UV-lig bestraling, en dus kan sonlig en selfs gewone binnenshuise beligting gebruik word om die gewenste uitwerking te verkry. In membraan ltrasie is die aanpaksel van onsuiwerhede 'n groot probleem, maar die verbetering van die self-reinigende eienskappe van fotokatalisators deur organiese verbindings te mineraliseer, kan die membraan se leeftyd en doeltre endheid verbeter word. In hierdie studie was die eerste benadering om nano-saamgestelde membraan ontwikkeling direk te verander deur die oppervlak van polyethylenetherephthalate (PET) BMe met 'n dun lagie TiO2 te bedek, met behulp van reaktiewe omgekeerde silindriese magnetron verstuiwing (OSMV).Die tweede benadering was eers om silwer (Ag) termies te verdamp oor die hele BM oppervlak, gevolg deur TiO2 verstuiwing bo-oor die silwer bedekte BM. As gevolg hiervan is 'n edelmetaal-titanium nano-saamgestelde dun lm laag gevorm bo-op die oppervlak van die BM, met beide self-reinigende en verhoogde hidro liese eienskappe. OSMV is 'n siese damp neerslag metode, waar materiaal van 'n teiken, met behulp van ho e-energie-ione, geskei word, en dan weer opgeneem word op 'n substraat om dun lms te vorm. Argon gas word gelyktydig in die neerslag kamer, saam met O2 (die reaktiewe gas), vrygestel om TiO2 te vorm. Die fotokatalitiese aktiwiteit en ander lm eienskappe, soos kristalliniteit, kan be nvloed word deur die verandering van byvoorbeeld die verstuiwingskrag, die druk in die reaksiekamer, teiken-tot-substraat afstand, substraattemperatuur, verstuiwing gassamestelling en vloeitempo. Hierdie eienskappe maak verstuiwing die ideale hulpmiddel vir die voorbereiding van die verskillende soorte TiO2 lms en nanostrukture vir fotokatalisasie. In hierdie tesis word OSMV gebruik ter voorbereiding van fotokatalitiese TiO2 dun lms, wat gedeponeer is op BMe. Hierdie lms word dan in diepte bestudeer, met die klem op bandgaping vermindering en BM oppervlak hergenerasie. Nanogestruktureerde TiO2 fotokataliste is voorberei deur middel van sjabloongerigte neerslag op BM substrate deur die ontginning van die goeie eienskappe van OSMV. Die TiO2-BM dun lms, sowel as Ag-TiO2-BM dun lms, is deeglik gekarakteriseer. OSMV voorbereide TiO2 dun lms toon goeie fotokatalitiese aktiwiteite. Nano-saamgestelde Ag-TiO2 dun lms is egter ge denti seer as 'n veel beter keuse as TiO2 dun lms. Ten slotte is 'n duidelike verbetering in die fotokatalitiese aktiwiteit bereik deur die vorming van die Ag-TiO2 nano-saamgestelde BMe. Dit was duidelik uit die bandgapingverbetering van 3,05 eV van TiO2 dun lms in vergelyking met die 2,76 eV van Ag-TiO2 dun lms. 'n Duidelike verbetering is behaal in die fotokatalitiese aktiwiteit deur die vorming van die Ag-TiO2 nano-saamgestelde TMs.
16

Substrate Independent Non-covalent Based Surface Functionalization Using Poyelectrolyte Multilayers for Bio-applications

Prashanth, G R January 2013 (has links) (PDF)
The electrostatic layer-by-layer (LbL) self-assembly of polyelectrolyte’s has shown applications in thin film coatings, micro patterning, nano-bioreactors and capsules for drug delivery. The film architecture can be precisely designed and controlled to nanometer scale precision with a range from 5 nm to a few microns. Both in vitro and in vivo studies indicate potential applications in biology, pharmaceutics, medicine, and other biomedical areas. This thesis work focused on the design and development of protocols to fabricate polyelectrolyte multi-layer patterns on a variety of substrates such as glass, metals and plastics such as acrylic and polycarbonate. The micro-scale polyelectrolyte patterns have applications in the creation of DNA, protein or cell based microarrays. This work also demonstrated the use of polyelectrolyte multi-layers in the enhancement of fluorescence signals from fluorophore-tagged molecules captured within the multi-layers. In-situ measurements using Fiber Bragg Gratings were carried out to study the kinetics of adsorption and desorption of polyelectrolytes participating in the layer buildup process under different process environmental conditions.
17

Live Cell Imaging to Investigate Bone Marrow Stromal Cell Adhesion and Migration on Titanium Surfaces: A Micro-Incubator <i>in vitro</i> Model

Jensen, Rebecca Leah January 2013 (has links)
No description available.
18

Advanced Multifunctional Bulk Optical & Fiber Bragg Grating Sensing Techniques

Shivananju, B N 07 1900 (has links) (PDF)
In this thesis work, a systematic quantitative study has been undertaken, on the performance of etched fiber Bragg Grating (FBG) sensors in the investigation of surface molecular adsorption in real-time; it is shown that the limit of detection (LOD) of FBGs etched below 2 microns diameter, is better compared to prominent optical label-free molecular sensing techniques such as Surface Plasmon Resonance (SPR). Novel fiber optic sensors based on FBG and etched FBG with various nano materials (polyelectrolytes, carbon nanotubes, hydrogel, metals and chalcogenides) coated on the surface of the core or cladding, have been proposed for sensing multi parameters such as pH, protein, humidity, gas, strain, temperature, and light etc. Besides being reproducible and repeatable, the proposed methods are fast, compact, and highly sensitive. A novel optical instrument has also been developed to measure angular deviation, binocular deviation and refractive index of glass slabs, and liquids, based on a shadow casting technique. This method uses the deviation in the geometrical shadow cast by a periodic dot pattern trans-illuminated by a distorted light beam from the transparent test specimen relative to a reference pattern.

Page generated in 0.0313 seconds