• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Desenvolvimento e caracteriza??o de um comp?sito matriz met?lica (CMM): a?o EUROFER97 refor?ado com Carbeto de T?ntalo - TaC

Oliveira, Leiliane Alves de 17 May 2013 (has links)
Made available in DSpace on 2014-12-17T14:07:16Z (GMT). No. of bitstreams: 1 LeilianeAO_TESE.pdf: 4802035 bytes, checksum: bde6bc8d17e2550b03283ed5a4ab3acc (MD5) Previous issue date: 2013-05-17 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / Steel is an alloy EUROFER promising for use in nuclear reactors, or in applications where the material is subjected to temperatures up to 550 ? C due to their lower creep resistance under. One way to increase this property, so that the steel work at higher temperatures it is necessary to prevent sliding of its grain boundaries. Factors that influence this slip contours are the morphology of the grains, the angle and speed of the grain boundaries. This speed can be decreased in the presence of a dispersed phase in the material, provided it is fine and homogeneously distributed. In this context, this paper presents the development of a new material metal matrix composite (MMC) which has as starting materials as stainless steel EUROFER 97, and two different kinds of tantalum carbide - TaC, one with average crystallite sizes 13.78 nm synthesized in UFRN and another with 40.66 nm supplied by Aldrich. In order to improve the mechanical properties of metal matrix was added by powder metallurgy, nano-sized particles of the two types of TaC. This paper discusses the effect of dispersion of carbides in the microstructure of sintered parts. Pure steel powders with the addition of 3% TaC UFRN and 3% TaC commercial respectively, were ground in grinding times following: a) 5 hours in the planetary mill for all post b) 8 hours of grinding in the mill Planetary only for steel TaC powders of commercial and c) 24 hours in the conventional ball mill mixing the pure steel milled for 5 hours in the planetary mill with 3% TaC commercial. Each of the resulting particulate samples were cold compacted under a uniaxial pressure of 600MPa, on a cylindrical matrix of 5 mm diameter. Subsequently, the compressed were sintered in a vacuum furnace at temperatures of 1150 to 1250 ? C with an increment of 20 ? C and 10 ? C per minute and maintained at these isotherms for 30, 60 and 120 minutes and cooled to room temperature. The distribution, size and dispersion of steel and composite particles were determined by x-ray diffraction, scanning electron microscopy followed by chemical analysis (EDS). The structures of the sintered bodies were observed by optical microscopy and scanning electron accompanied by EDS beyond the x-ray diffraction. Initial studies sintering the obtained steel EUROFER 97 a positive reply in relation to improvement of the mechanical properties independent of the processing, because it is obtained with sintered microhardness values close to and even greater than 100% of the value obtained for the HV 333.2 pure steel as received in the form of a bar / O a?o EUROFER ? uma liga promissora para utiliza??o em reatores nucleares, ou em aplica??es onde o material ? submetido a temperaturas de servi?o at? 550?C devido sua menor resist?ncia sob flu?ncia. Uma forma de aumentar essa propriedade, para que o a?o trabalhe a temperaturas mais altas ? necess?rio impedir o deslizamento de seus contornos de gr?o. Fatores que influenciam nesse deslizamento dos contornos s?o a morfologia dos gr?os, o ?ngulo e a velocidade dos contornos de gr?o. Esta velocidade pode ser diminu?da com a presen?a de uma fase dispersa no material, desde que seja fina e distribu?da de forma homog?nea. Neste contexto, este trabalho apresenta o desenvolvimento de um novo material Comp?sito de Matriz Met?lica (CMM), que tem como materiais de partida o a?o inoxid?vel EUROFER 97; e dois tipos diferentes de Carbeto de T?ntalo TaC, um com tamanhos m?dios de cristalitos de 13,78 nm sintetizado na UFRN e outro com 40,66 nm fornecido pela Aldrich. Objetivando melhorar as propriedades mec?nicas da matriz met?lica foi adicionado, atrav?s da metalurgia do p?, part?culas nanom?tricas desses dois tipos de TaC. Este trabalho discute o efeito da dispers?o desses carbetos na microestrutura das pe?as sinterizadas. P?s de a?o puro, com adi??o de 3% de TaC UFRN e 3% de TaC comercial respectivamente, foram mo?dos nos seguintes tempos de moagem: a) 5 horas, no moinho planet?rio para todos os p?s; b) 8 horas de moagem no moinho planet?rio somente para os p?s de a?o com TaC comercial; e c) 24 horas no moinho convencional de bolas da mistura do a?o puro mo?do durante 5 horas no moinho planet?rio com 3% de TaC comercial. Cada uma das amostras particuladas resultantes foram compactadas a frio sob uma press?o uniaxial de 600MPa, em uma matriz cil?ndrica de 5 mm de di?metro. Posteriormente, os compactados foram sinterizadas em forno a v?cuo, em temperaturas de 1150 e 1250? C com incremento de 20 ?C e 10?C por minuto, sendo mantidas nestas isotermas por 30, 60 e 120 minutos e resfriadas ? temperatura ambiente. A distribui??o, tamanho e dispers?o dos a?os e comp?sitos particulados foram determinadas por difra??o de raios x, microscopia eletr?nica de varredura seguida de uma an?lise qu?mica (EDS). As estruturas dos corpos sinterizados foram observadas por microscopia ?tica e eletr?nica de varredura acompanhada de EDS al?m da difra??o de raios x. Os estudos iniciais de sinteriza??o com o a?o EUROFER 97 obteve uma resposta positiva em rela??o a melhoria das propriedades mec?nicas independente do processamento, pois se obteve sinterizados com valores de microdureza pr?ximo e at? maior que 100% do valor de 333,2 HV obtidos para o a?o puro como recebido, em forma de barra
2

Určování lomově-mechanických charakteristik z podrozměrných zkušebních těles / Determination of Fracture Mechanical Characteristics From Sub-Size Specimens

Stratil, Luděk Unknown Date (has links)
The standards of fracture toughness determination prescribe size requirements for size of test specimens. In cases of limited amount of test material miniature test specimens offer one from the possibilities of fracture toughness evaluation. Because of small loaded volumes in these specimens at the crack tip the loss of constraint occur affecting measured values of fracture toughness. In such cases the size requirements for valid fracture toughness characteristics determination are not fulfilled. These specimens can be even on limits of load range of test devices and handle manipulation by their small dimensions. The important task related to these specimens is, apart from methodology of their preparation and measurement of deformations, the interpretation of measured values of fracture toughness and their possible correction to standard test specimens. Moreover, in the upper shelf region of fracture toughness quantification and interpretation of size effects is still not resolved sufficiently. This thesis is by its aims experimentally computational study focused on evaluation of size effect on fracture toughness in the upper shelf region. The size effect was quantified by testing of miniature and large specimens’ sizes in order to determine J R curves. Two geometries of miniature test specimens, there point bend specimen and CT specimen, were used. The experimental materials were advanced steels developed for applications in nuclear and power industry, Eurofer97 steel and ODS steel MA956. Finite elements analyses of realized tests together with application of micromechanical model of ductile fracture were carried out in order to evaluate stress strain fields at the crack tip in tested specimens from Eurofer97 steel. By comparison of experimental results and numerical simulations of J R curves the mutual dependencies between geometry of specimens and element sizes at the crack tip were derived. On the basis of acquired relationships, the methodology of J R curve prediction for standard specimen size from limited amount of test material was proposed. Main contribution of thesis is description of effect of material’s fracture toughness level on resistance against ductile crack propagation in miniature specimens. For material where significant crack growth occurs after exceeding the limit values of J integral (Eurofer97), the loss of constraint is considerable and highly decreases resistance against tearing. Miniature specimens then show significantly lower J R curves in comparison with standard size specimens. This effect is the opposite to the behaviour of miniature specimens in transition region. In case of material with low toughness, in which significant crack growth occurs in the region of J integral validity (ODS MA956), the effect of constraint loss is small without large impact on resistance against tearing. In such case miniature specimens demonstrate comparable J R curves as specimens of larger sizes. Next important contribution is proposed methodology for prediction of J R curve from small amount of test material using micromechanical modeling.

Page generated in 0.0388 seconds