• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Near-Infrared Diffraction Radiation Spectrometer for MHz Repetition Rate Electron Bunch Diagnostics at the European XFEL

Fahlström, Simon January 2019 (has links)
We have built a spectrometer to investigate the Near-Infrared (NIR) range of this radiation, which is used for bunch diagnostics at the European X-ray Free-Electron Laser. This could give information on the development of microbunching, periodic features in the longitudinal charge profile of the bunches which have a negative impact on the operation of the facility. In general it offers an ability to investigate the influences of the laser heater, the compression, and other factors that affect the structure of the bunches. The CDR is generated 1934 m after the injector, at full acceleration. The spectrometer is based around the KALYPSO detector system, able to read out from a 256 pixel linear array detector at MHz frequencies, making it possible to obtain single bunch readings during current user operation of the facility, at 1.1 MHz. KALYPSO has an InGaAs sensor, sensitive in the range 0.9 – 1.7 μm. A 40 mm N-SF11 equilateral prism is used for dispersion. First measurements have been taken, and CDR has been detected. The spectrometer needs further calibration and resolution was lacking, but it can offer insight in to relative changes, and bunch-to and can be used as for fingerprinting the beam. A reduction in signal in the sensitive range and a skew towards longer wavelengths was seen when going from uncompressed to compressed beam. When varying the power of the laser heater the behavior varied from run to run, with changing machine settings. In some cases the CDR was attenuated, while FEL intensity initially increased, until the induced energy spread from the laser heater was large enough to inhibit the FEL process. Another, less expected, behaviour was also observed, where the initially low CDR intensity at first increased, while FEL intensity stayed the same, before it then followed the same pattern as in the first case.

Page generated in 0.0449 seconds