1 |
Thermal Analysis Of Eutectic Modified And Grain Refined Aluminum-silicon AlloysIslamoglu, Erol Hamza 01 September 2005 (has links) (PDF)
A series of AlSi9Mg alloys were prepared and tested to reveal the effect of addition sequence and timing of grain refiner and eutectic modifier. AlSr10 master alloy was used as an modification reagent, and also for grain refiner AlTi5B master alloy was used. The depression at the eutectic temperature due to the addition of modifier and decrease in the amount of undercooling at the liquidus due to the presence of grain refiner were examined by the cooling curves which were obtained by the Alu-Therm instrument, which is the aluminum thermal analyzer of the Heraeus Electro-Nite.
The alloys that were both modified and grain refined were subsequently poured as tensile test specimen shapes in permanent die casting mould for four times at 60 minutes time intervals, meanwhile thermal analysis of the alloys were also made.
In this work the effect of grain refinement and modification agent, also the determination of the optimum time to pour after adding these agents were studied by aluminum thermal analyzer. The parameters obtained from this analyzer are compared with the microstructures / to see the effect of these agents on mechanical properties, hardness, tensile strength and percent elongation values were investigated.
In this study the possibility of predicting the mechanical properties prior to casting by thermal analysis method was examined by regression analysis method. By this method relationship between thermal analysis parameters and mechanical properties was established.
|
2 |
High performing cast aluminium-silicon alloysRiestra, Martin January 2017 (has links)
The need to produce lighter components due to environmental aspects and the development of electrical vehicles represents an opportunity for cast aluminium-silicon alloys. With high specific strength, good castability, high corrosion resistance and recyclability, these alloys offer an attractive combination of properties as an alternative to steel, cast iron and titanium-based components in certain applications. To take advantage of such a combination of properties, there is a need to ensure that they can be reliably achieved. In other words, high performing components need to be produced. For that, the production cycle, from alloy selection and melt preparation, to the casting and heat treatment of the component must be understood and controlled as a whole. The different steps in the production cycle will affect the microstructure of the components and hence the resulting mechanical properties. Understanding the relation between the different steps in the production cycle, its consequences on the microstructural features and on the mechanical properties constitutes the aim of this thesis. Experiments applying state-of-the-art knowledge regarding effect of casting process, alloying system and post-process variables were performed aimed at achieving properties similar to those of high pressure die casting (HPDC) components. Different melt quality determination tools were evaluated on three different EN AC-46000 melt qualities. The influence of modification, grain refinement and both treatments together was assessed on an Al-10Si alloy solidified under different cooling rates. The tensile behaviour and the impact of features such as secondary dendrite arm spacing (SDAS) or grain sizes was quantified. It was corroborated that by appropriate selection and control of such alloying system, process and post-process variables it is possible to achieve HPDC EN AC-46000 tensile and fatigue properties through a T5 treated sand cast EN AC-42100 alloy. On the other hand, the available techniques for melt quality assessment are inadequate, requiring further analysis to successfully identify the melt quality. Additionally, it was observed that decreasing the melt quality by additions of 25 wt.% of machining chips did not significantly decrease the tensile properties but slightly increased the variation in them. In relation to the modification and grain refinement of Al-10Si alloys it was concluded that with the slowest cooling rate tested, additions of only grain refiner did not successfully produce equiaxed grains. For cooling rates corresponding to dendrite arm spacings of 15 μm and slower, combined additions of grain refiner and modifier can lead to higher tensile properties compared to the corresponding separate additions. SDAS was observed to describe flow stress through the Hall-Petch equation but grain size did not show a physically meaningful relationship. Furthermore, beginning of cracking was detected in the plastic deformation region at dendrite/eutectic boundaries and propagated in a trans-granular fashion.
|
3 |
Treatment of a Liquid Al-Si Alloy : Quality Control and Comparison of Two Melt Degassing ProcessesRadwan, Badreddin January 2020 (has links)
Products manufactured by aluminium casting have become very popular and already replaced many parts that were once produced by iron and steel casting. This trends upwards especially in the automotive industry as it has become extremely important to reduce vehicle weight due to environmental requirements and economical aspects. This popularity of aluminium alloys could be ascribed to their light weights and many other advantages including excellent castability, good corrosion resistance, good thermal and electrical conductivity, good machinability, low melting temperatures and minimal gas solubility with the exception of hydrogen. The most important alloy group among casting alloys is Aluminium Silicon (Al - Si). Al-Si alloys must undergo a specific melt treatment procedure prior to casting. This treatment consists of several steps including degassing of hydrogen, grain refinement and eutectic modification. The aim of this study is to make an assessment of the metal treatment process of an (Al-Si) casting alloy at Unnaryd Modell AB for the purpose of improving the melt conditions and thus the quality of the final product. A rotary degasser provided by Foseco is also tested instead of the traditional tablet degassing method to see if this technique would result in any significant improvement of the melt quality. The results show that Unnaryd modell AB follows a proper treatment routine. It shows moreover that the rotary degassing is superior to the tablet degassing in many aspects including the level of degassing achieved, time efficiency, environmental consideration and personnel security.
|
4 |
Efeito de inoculantes para refino de grão e modificador de eutético na curva de resfriamento da liga A356 e da liga A356 reciclada / Effect of inoculants for grain refiniment and eutectic modifier in the cooling curve of A356 alloy and recycled A356 alloySilva, Cássia Cavalcanti [UNESP] 07 July 2016 (has links)
Submitted by Cassia Cavalcanti da Silva null (cassiacavalcanti@terra.com.br) on 2016-08-01T22:46:23Z
No. of bitstreams: 1
Silva_Cássia_2016.pdf: 9369604 bytes, checksum: d9e7dedc0ffe91324f392628a9e5c12f (MD5) / Approved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-08-03T16:09:39Z (GMT) No. of bitstreams: 1
silvia_cc_dr_guara.pdf: 9369604 bytes, checksum: d9e7dedc0ffe91324f392628a9e5c12f (MD5) / Made available in DSpace on 2016-08-03T16:09:39Z (GMT). No. of bitstreams: 1
silvia_cc_dr_guara.pdf: 9369604 bytes, checksum: d9e7dedc0ffe91324f392628a9e5c12f (MD5)
Previous issue date: 2016-07-07 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / A liga AA 356 é uma liga Al-Si amplamente utilizada tanto na indústria automobilística como na aeronáutica. Para melhorar suas propriedades mecânicas, são usados inoculantes para o refino de grão e para modificação eutética. Os componentes solidificados em moldes metálicos, que são mais eficientes na extração de calor, em geral, têm propriedades mecânicas superiores àqueles solidificados em moldes de areia que apresentam uma menor taxa de extração de calor. A curva de resfriamento que é uma curva da temperatura em função do tempo obtida da extremidade de um termopar localizado no centro do molde e conectado a um sistema de aquisição de dados é uma ferramenta que permite avaliar tanto o refino de grão quanto a modificação eutética. Essa ferramenta permite observar também a formação de fases intermetálicas, e é influenciada por fatores como a taxa de resfriamento. A primeira derivada da curva de resfriamento que representa a taxa de resfriamento é parte da ferramenta, pois melhora a precisão dos dados obtidos com a curva de resfriamento. Para o desenvolvimento desse trabalho foram preparados lingotes variando-se o material do molde (areia e aço), o teor de modificador de eutético e a adição de refinador de grão, ambos na forma de ligas-mãe (ante-liga) Al-10Sr e Al-5Ti-1B, respectivamente. Os valores para traçar as curvas de resfriamento foram obtidos monitorando a temperatura do metal desde o vazamento até sua completa solidificação e posterior resfriamento. Amostras do material foram preparadas para metalografia e obtidas imagens de macroestrutura e microestrutura. Da microestrutura foram obtidas as imagens com o ataque químico convencional e o ataque químico profundo; foram realizadas medidas de fração de porosidade por área, por técnica de microscopia, além de medidas de dureza Vickers e Brinell. Os resultados confirmam que a técnica da análise térmica da curva de resfriamento é uma excelente ferramenta, pois além de fornecer as temperaturas solidus e liquidus, as temperaturas de transformações de fases e informações sobre a eficácia do refino de grão e modificação eutética, pode ser utilizada na avaliação da presença de impurezas e na identificação de fases presentes nas ligas, tanto da liga primária quanto da liga reciclada. / The alloy AA 356 is an Al-Si alloy widely used in the automotive and aeronautics industry. To improve the mechanical properties of this alloy inoculants are used to grain refine and eutectic modification. The solidified components in metal mold, with a higher heat extraction rate, generally have mechanical properties superior to those solidified in sand mold with a lower heat extraction rate. The cooling curve is a curve of temperature versus time obtained in the end of a thermocouple located in the center of the mold and connected to a data acquisition system. It is a tool to evaluate both the grain refinement as the eutectic modification. This tool also can also be used to observe the formation of intermetallic phases, and is influenced by factors such as the cooling rate. The first derivative of the curve representing the cooling rate is part of the tool because it improves the accuracy of the data obtained from the curve. For the development of this work ingots were prepared varying the mold material (sand and steel), the content of eutectic modifier and the grain refiner addition , both in the form of master alloys Al-10Sr and Al-5Ti-1B, respectively.The data for plotting the cooling curves were obtained experimentally during solidification; Samples of the material were prepared for metallography and macrostructure and microstructure images were obtained. Through microstructure images obtained with conventional etching and deep etching. Porosity fraction area was measured by microscopy technique and hardness measurements were performed by Vickers and Brinell metdhod. The results confirm that the thermal analysis of the cooling curve is an excellent tool because provides the solidus and liquidus temperatures and the phase transformations on the effectiveness of the grain refining and eutectic modification and it can be used to assess the presence of impurities in the phase identification, for both the primary alloy and the recycled alloy.
|
Page generated in 0.1056 seconds