• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Force Feedback Control of a Semi-Active Shock Absorber / Kraftåterkopplad reglering av semiaktiv stötdämpare

Svennerbrandt, Per January 2014 (has links)
Semi-active suspension systems promise to significantly reduce the necessary trade-off be-tween handling and passenger comfort present in conventional suspension systems by enabling active chassis and wheel control. Öhlins Racing AB have developed a semi-active suspension technology known as CES, Continuously controlled Electronic Suspension, based on solenoid control valves which are integrated into specially designed hydraulic dampers, and are currently developing control and estimation systems which will enable their application in advanced motorcycle suspensions. In these systems an important aspect is being able to accurately control the forces produced. Öhlins’ current system uses an open loop control strategy in which currents sent through the solenoid valves, to achieve the requested damping force under the prevailing circumstances, is calculated using experimentally derived static lookup tables. In this thesis a new closed loop control system, based on the direct measurement of the damper force, is developed and its performance is evaluated in comparison to the old one’s. Sufficient understanding of the system requires extensive modeling and therefore two different models have been developed; a simpler one used for model based control design and a more extensive, high fidelity model used for high accuracy simulations. The developed simulation model is the first of its kind that is able to capture the studied systems behavior with satisfactory accuracy, as demonstrated against real dynamometer measurements. The valves and damper behave in a highly non linear manner and the final controller design uses a combination of exact linearization, non linear state estimation, dynamical inversion and classical control theory. Simulation results indicate that the new controller reduces the root mean square force tracking error to about 63% of that of the existing controller in the evaluation scenarios used. Cascaded within the system is also closed loop current controllers. A developed model based controller is shown to reduce the rise time to less than 30% of that of the existing PID-controllers, reduce the overshoot and provide online estimates of the winding series resistance, providing the basis for future solenoid diagnosis and temperature tracking systems.
2

Control of Unmanned Aerial Vehicles using Non-linear Dynamic Inversion / Design av styrlagar för obemannade farkoster med hjälp av exakt linjärisering

Karlsson, Mia January 2002 (has links)
This master's thesis deals with the control design method called Non-linear Dynamic Inversion (NDI) and how it can be applied to Unmanned Aerial Vehicles (UAVs). In this thesis, simulations are conducted using a model for the unmanned aerial vehicle SHARC (Swedish Highly Advanced Research Configuration), which Saab AB is developing. The idea with NDI is to cancel the non-linear dynamics and then the system can be controlled as a linear system. This design method needs much information about the system, or the output will not be as desired. Since it is impossible to know the exact mathematical model of a system, some kind of robust control theory is needed. In this thesis integral action is used. A problem with NDI is that the mathematical model of a system is often very complex, which means that the controller also will be complex. Therefore, a controller that uses pure NDI is only discussed, and the simulations are instead based on approximations that use a cascaded NDI. Two such methods are investigated. One that uses much information from aerodata tables, and one that uses the derivatives of some measured outputs. Both methods generate satisfying results. The outputs from the second method are more oscillatory but the method is found to be more robust. If the signals are noisy, indications are that method one will be better.
3

Control of Unmanned Aerial Vehicles using Non-linear Dynamic Inversion / Design av styrlagar för obemannade farkoster med hjälp av exakt linjärisering

Karlsson, Mia January 2002 (has links)
<p>This master's thesis deals with the control design method called Non-linear Dynamic Inversion (NDI) and how it can be applied to Unmanned Aerial Vehicles (UAVs). In this thesis, simulations are conducted using a model for the unmanned aerial vehicle SHARC (Swedish Highly Advanced Research Configuration), which Saab AB is developing. </p><p>The idea with NDI is to cancel the non-linear dynamics and then the system can be controlled as a linear system. This design method needs much information about the system, or the output will not be as desired. Since it is impossible to know the exact mathematical model of a system, some kind of robust control theory is needed. In this thesis integral action is used. </p><p>A problem with NDI is that the mathematical model of a system is often very complex, which means that the controller also will be complex. Therefore, a controller that uses pure NDI is only discussed, and the simulations are instead based on approximations that use a cascaded NDI. Two such methods are investigated. One that uses much information from aerodata tables, and one that uses the derivatives of some measured outputs. Both methods generate satisfying results. The outputs from the second method are more oscillatory but the method is found to be more robust. If the signals are noisy, indications are that method one will be better.</p>

Page generated in 0.0836 seconds