Spelling suggestions: "subject:"excavations machinery"" "subject:"excavation machinery""
11 |
Modelling of dragline dynamicsCrous, Pieter Gobregts 03 1900 (has links)
Thesis (MEng) -- Stellenbosch University, 2000. / ENGLISH ABSTRACT: The utilisation ofDraglines to remove overburden in surface mining operations is often the
process that determines the output of these operations. The bucket and its rigging have
been identified as important components where design changes can improve the efficiency
of the dragline. It is necessary to create a method to predict the dynamic behaviour of the
bucket when various design changes are made to the rigging and the bucket. A rigid
multibody dynamic method is formulated that can be used to predict the behaviour of any
physical system that can be modelled as a set of connected rigid bodies. This multibody
method is verified with analytic test problems and an experiment. A description is given
how to use this rigid multibody dynamic method to model the dragline and predict the
behaviour ofthe bucket during an operational cycle. / AFRIKAANSE OPSOMMING: Sleepgrawe word gebruik in oppervlakmynbouaktiwiteite om die mineraal neerslae wat
ontgin word te ontbloot. Hierdie proses bepaal baie keer die produksie van die mynbou
aktiwiteit. Die sleepgraaf se bak en die takelwerk van die bak het 'n groot invloed op die
sleepgraaf se werksverrigting. Om die bak se werksverrigting te verbeter is 'n metode
nodig om die dinamiese gedrag van die bak te voorspel. In hierdie dokument word 'n
metode beskryf waarmee die dinamiese gedrag van enige stelsel bepaal kan word, wat as
'n stelsel van onderling-verbinde onbuigbare liggame beskryf kan word. Die korrektheid
van hierdie metode is getoets met behulp van analitiese sowel as eksperimentele metodes.
Daar word ook 'n beskrywing gegee hoe hierdie metode gebruik kan word om die
beweging van die bak tydens 'n tipiese werksiklus te voorspel.
|
12 |
An efficient haptic interface for a variable displacement pump controlled excavatorElton, Mark David 05 1900 (has links)
Human-machine interfaces influence both operator effectiveness and machine efficiency. Further immersion of the operator into the machine’s working environment gives the operator a better feel for the status of the machine and its working conditions. With this knowledge, operators can more efficiently control machines. The use of multi-modal HMIs involving haptics, sound, and visual feedback can immerse the operator into the machine’s environment and provide assistive clues about the state of the machine. This thesis develops a realistic excavator model that mimics a mini-excavator’s dynamics and soil interaction during digging tasks. A realistic graphical interface is written that exceeds the quality of current academic simulators. The graphical interface and new HMI are placed together with a model of the excavator’s mechanical and hydraulic dynamics into an operator workstation. Two coordinated control schemes are developed on an haptic display for a mini-excavator and preliminary tests are run to measure increases in operator effectiveness and machine efficiency.
|
13 |
High-fidelity modeling of a backhoe digging operation using an explicit multibody dynamics finite element code with integrated discrete element methodAhmadi Ghoohaki, Shahriar 06 November 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In this thesis, a high- fidelity multibody dynamics model of a backhoe for simulating the digging operation is developed using the DIS (Dynamic Interactions Simulator)multibody dynamics software. Sand is used as a sample digging material to illustrate the model. The backhoe components (such as frame, manipulators links,track segments, wheels and sprockets) are modeled as rigid bodies. The geometry of the major moving components of the backhoe is created using the Pro/E solid modeling software. The components of the backhoe are imported to DIS and connected
using joints (revolute, cylindrical and prismatic joints). Rotary and linear
actuators along with PD (Proportional-Derivative) controllers are used to move and steer the backhoe and to move the backhoes manipulator in the desired trajectory.
Sand is modeled using cubic shaped particles that can come into contact with each other, the backhoes bucket and ground. A cubical sand particle contact surface is modeled using eight spheres that are rigidly glued to each other to form a cubical shaped particle, The backhoe and ground surfaces are modeled as polygonal surfaces.
A penalty technique is used to impose both joint and normal contact constraints (including track-wheels, track-terrain, bucket-particles and particles-particles contact).
An asperity-based friction model is used to model joint and contact friction. A Cartesian Eulerian grid contact search algorithm is used to allow fast contact detection between particles. A recursive bounding box contact search algorithm is used to allow fast contact detection for polygonal contact surfaces and is used to detect contact between: track and ground; track and wheels; bucket and particles; and ground and particles. The governing equations of motion are solved along with joint/constraint equations using a time-accurate explicit solution procedure.
The sand model is validated using a conical hopper sand flow experiment in which the sand flow rate during discharge and the angle of repose of the resulting sand pile are experimentally measured. The results of the conical hopper simulation are compared with previously published experimental results. Parameter studies are performed
using the sand model to study the e ffects of the particle size and the orifi ces
diameter of the hopper on the sand pile angle of repose and sand flow rate.
The sand model is integrated with the backhoe model to simulate a typical digging operation. The model is used to predict the manipulators actuator forces needed to dig through a pile of sand. Integrating the sand model and backhoe model can help improving the performance of construction equipment by predicting, for various vehicle design alternatives: the actuator and joint forces, and the vehicle stability during digging.
|
14 |
High-fidelity modelling of a bulldozer using an explicit multibody dynamics finite element code with integrated discrete element methodSane, Akshay Gajanan 29 April 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In this thesis, an explicit time integration code which integrates multibody dynamics
and the discrete element method is used for modelling the excavation and moving
operation of cohesive soft soil (such as mud and snow) by bulldozers. A soft cohesive
soil material model (that includes normal and tangential inter-particle force models)
is used that can account for soil compressibility, plasticity, fracture, friction, viscosity
and gain in cohesive strength due to compression. In addition, a time relaxation
sub-model for the soil plastic deformation and cohesive strength is added in order to
account for loss in soil cohesive strength and reduced bulk density due to tension or
removal of the compression. This is essential in earth moving applications since the
soil that is dug typically becomes loose soil that has lower shear strength and lower
bulk density (larger volume) than compacted soil. If the model does not account for
loss of soil shear strength then the dug soil pile in front of the blade of a bulldozer
will have an artificially high shear strength. A penalty technique is used to impose
joint and normal contact constraints. An asperity-based friction model is used to
model contact and joint friction. A Cartesian Eulerian grid contact search algorithm
is used to allow fast contact detection between particles. A recursive bounding box
contact search algorithm is used to allow fast contact detection between the particles
and polygonal contact surfaces.
A multibody dynamics bulldozer model is created which includes the chassis/body,
C-frame, blade, wheels and hydraulic actuators. The components are modelled as
rigid bodies and are connected using revolute and prismatic joints. Rotary actuators
along with PD (Proportional-Derivative) controllers are used to drive the wheels.
Linear actuators along with PD controllers are used to drive the hydraulic actuators.
Polygonal contact surfaces are defined for the tires and blade to model the interaction
between the soil and the bulldozer. Simulations of a bulldozer performing typical
shallow digging operations in a cohesive soil are presented. The simulation of a rear
wheel drive bulldozer shows that, it has a limited digging capacity compared to the
4-wheel drive bulldozer. The effect of the relaxation parameter can be easily observed
from the variation in the Bulldozer's velocity. The higher the relaxation parameter,
the higher is the bulldozer's velocity while it is crossing over the soil patch. For the
low penetration depth run the bulldozer takes less time compared to high penetration
depth. Also higher magnitudes of torques at front and rear wheels can be observed
in case of high penetration depth. The model is used to predict the wheel torque,
wheel speed, vehicle speed and actuator forces during shallow digging operations on
three types of soils and at two blade penetration depths. The model presented can
be used to predict the motion, loads and required actuators forces and to improve
the design of the various bulldozer components such as the blade, tires, engine and
hydraulic actuators.
|
Page generated in 0.0659 seconds