• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of Pyridazine-Derivatives for the Treatment of Neurological Disorders

Foster, Joshua B. 28 August 2019 (has links)
No description available.
2

The four major N- and C-terminal splice variants of the excitatory amino acid transporter GLT-1 form cell surface homomeric and heteromeric assemblies

Peacey, E., Miller, C.C., Dunlop, J., Rattray, Marcus January 2009 (has links)
No / The L-glutamate transporter GLT-1 is an abundant central nervous system (CNS) membrane protein of the excitatory amino acid transporter (EAAT) family that controls extracellular L-glutamate levels and is important in limiting excitotoxic neuronal death. Using reverse transcription-polymerase chain reaction, we have determined that four mRNAs encoding GLT-1 exist in mouse brain, with the potential to encode four GLT-1 isoforms that differ in their N and C termini. We expressed all four isoforms (termed MAST-KREK, MPK-KREK, MAST-DIETCI, and MPK-DIETCI according to amino acid sequence) in a range of cell lines and primary astrocytes and show that each isoform can reach the cell surface. In transfected human embryonic kidney (HEK) 293 or COS-7 cells, all four isoforms support high-affinity sodium-dependent L-glutamate uptake with identical pharmacological and kinetic properties. Inserting a viral epitope (tagged with V5, hemagglutinin, or FLAG) into the second extracellular domain of each isoform allowed coimmunoprecipitation and time-resolved Forster resonance energy transfer (tr-FRET) studies using transfected HEK-293 cells. Here we show for the first time that each of the four isoforms is able to combine to form homomeric and heteromeric assemblies, each of which is expressed at the cell surface of primary astrocytes. After activation of protein kinase C by phorbol ester, V5-tagged GLT-1 is rapidly removed from the cell surface of HEK-293 cells and degraded. This study provides direct biochemical evidence for oligomeric assembly of GLT-1 and reports the development of novel tools to provide insight into the trafficking of GLT-1.
3

Riluzole elevates GLT-1 activity and levels in striatal astrocytes

Carbone, M., Duty, S., Rattray, Marcus January 2012 (has links)
No / Drugs which upregulate astrocyte glutamate transport may be useful neuroprotective compounds by preventing excitotoxicity. We set up a new system to identify potential neuroprotective drugs which act through GLT-1. Primary mouse striatal astrocytes grown in the presence of the growth-factor supplement G5 express high levels of the functional glutamate transporter, GLT-1 (also known as EAAT2) as assessed by Western blotting and (3)H-glutamate uptake assay, and levels decline following growth factor withdrawal. The GLT-1 transcriptional enhancer dexamethasone (0.1 or 1 muM) was able to prevent loss of GLT-1 levels and activity following growth factor withdrawal. In contrast, ceftriaxone, a compound previously reported to enhance GLT-1 expression, failed to regulate GLT-1 in this system. The neuroprotective compound riluzole (100 muM) upregulated GLT-1 levels and activity, through a mechanism that was not dependent on blockade of voltage-sensitive ion channels, since zonasimide (1 mM) did not regulate GLT-1. Finally, CDP-choline (10 muM-1 mM), a compound which promotes association of GLT-1/EAAT2 with lipid rafts was unable to prevent GLT-1 loss under these conditions. This observation extends the known pharmacological actions of riluzole, and suggests that this compound may exert its neuroprotective effects through an astrocyte-dependent mechanism.

Page generated in 0.1059 seconds