• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

PILCs for trapping phosphorus in a heavy duty engine exhaust system : An experimental evaluation of the phosphorus sorption capability of different clay materials

Kvarned, Anders January 2016 (has links)
In order to fulfil the requirements in the EURO VI standard, regulating emissions from heavy duty vehicles, the exhaust aftertreatment system needs to maintain its efficiency for at least seven years or 700 000 km. In diesel applications the diesel oxidation catalyst (DOC) is located closest to the engine and is thus the most vulnerable to poisoning contaminants, such as phosphorus originating from fuel and oil additives, which deactivates the catalyst. An idea to reduce the impact from phosphorus impurities (recently patented by Scania CV) is to place a low-cost sacrificial substrate, consisting of one or more pillared clay mineral (PILC) with high affinity for phosphorus, upstream the aftertreatment system in order to protect and thus increase the lifetime of the catalytic components which contain platinum group metals. In this work one commercially available and four custom made PILCs, comprising of two conventional type PILCs and two of the type porous clay heterostructures (PCH), were evaluated. The PILCs were exposed to a phosphorus-containing gaseous mixture using a lab-scale experimental setup in order to determine their phosphorus sorption potential. The PILC materials exhibit potential to function as sacrificial substrates for phosphorus in the intended application. It was indicated to be a correlation between increasing iron content (wt%) and increasing phosphorus sorption capability. The most promising material was the custom made Al,Fe-pillared saponite, which was up to twice as effective in trapping phosphorus as the DOC. The commercial sample, the Al-pillared montmorillonite, was only about as efficient as the DOC.
2

DeNOx Studies In Diesel Exhaust Under AC/Pulse Energizations

Bhattacharyya, Anusuya 09 1900 (has links) (PDF)
It is the need of the hour to reduce the pollutants which poison our atmosphere and harm our health. The diesel engines are the most efficient IC engines in the world today, but paradoxically, they are also the engines which create the largest amounts of NOx, the pollutant that is most difficult to control with the existing technologies. In fact, the existing technologies are unable to meet the increasingly stringent standards for NOx. Even in bio-diesels, which in the future may be adopted as an important alternative fuel, NOx is the major pollutant. Thus not having a safe and stable method for NOx removal from the diesel exhaust stream is a cause for concern. In this thesis, there has been an attempt to address this issue by means of non-thermal plasma and catalysts. In this thesis, first the performance of the three sources was evaluated individually, along with two different HV electrodes, a helical wire and a straight wire. Secondly, the efficiencies of these three different types of sources were compared. Thirdly, a catalyst (Red Mud) and an adsorbent (NaZSM5) were cascaded with the plasma reactor to enhance the performance of the NOx removal process with the AC source as it gave the best results. All the experiments were performed with real diesel engine exhaust. The conclusions drawn from the experiments are as follows: The helical electrode consumes much lower power than the straight electrode. Therefore it is energy efficient. It also causes corona inception at lower voltages due to the strong non-uniformity of its electric field. The drawbacks of the helical electrode are an excess production of NO2 .it also does not work with the HFAC source, because at high frequency, the voltage doesn’t build up owing to the presence of only a dielectric medium of 2 mm thickness between the two electrodes. The performances of the 3 sources were compared. The HVAC unit gave the best NOx removal, followed by the MPC and finally, the HFAC source. The differences in efficiencies were related to both the magnitude of the peak voltage achieved by each device and the time period. It was also seen that when the voltage was high, a better efficiency can be achieved with lower power consumption. The comparison of the sources leads us to conclude that the high voltage AC source can be used as an economic alternative for NOx control. This is because a standard AC unit is easily available at higher voltages, and contains less electrical or mechanical complexity, whereas a pulsed source is comparatively expensive and complex. The NaZSM5 zeolite showed excellent removal at room temperature as an adsorbent when cascaded after the AC source, by reducing the NO2 levels consistently. The Red Mud showed reasonable catalytic activity at 400 C with the AC source. It was also efficient in compensating for the increase in the NO2 and CO concentration in the plasma atmosphere. Hence, both Red Mud and ZSM 5 are good candidates for a hybrid plasma-adsorbent or plasma-catalyst system. The combination better NOx/CO removal is the AC energization coupled with spiral electrode with either ZSM-5 or red mud. Scaling up the plasma/ plasma- catalyst system for handling higher flow rates will be the main task next. A method to optimize the source and load matching for better power transfer to the plasma reactor from the different sources also need to be developed. The design of the compact high frequency AC source must be upgraded for higher powers.
3

Electric Discharge Plasma Promoted Adsorption/Catalysis, For Removal Of NOx, HC And CO From An Actual Diesel Engine Exhaust

Srinivasan, A D 08 1900 (has links) (PDF)
No description available.

Page generated in 0.0839 seconds