11 |
Late Cenozoic Exhumation in a Transpressional Setting: Fairweather Range, AlaskaMcAleer, Ryan Joseph 06 September 2006 (has links)
Deformation in southern Alaska is controlled by the accretion and partial subduction of the Yakutat terrane as margin-parallel motion transitions to subduction. Recent studies have shown that deformation in the St. Elias orogen, at the northern end of the terrane, accommodates a large portion of convergence, but deformation at the eastern and southern margins remains more poorly constrained. Rapid recent sedimentation (> 1cm/yr) and glacio-isostatic uplift rates (> 3 cm/yr) in the Fairweather corridor highlight short-term vertical deformation at the eastern margin; however, the relationship between these rates and long-term deformation is less well known. New low-temperature cooling ages are reported along the eastern flank of the St. Elias orogen, placing constraints on vertical deformation over the past few million years. Young cooling ages (< 3 Ma) occur in a broad zone, extending along the onshore length of the strike-slip Fairweather fault. These ages indicate that protracted convergence has been accommodated in the Fairweather corridor. Average (~1 mm/yr) and peak (~3 mm/yr) late Cenozoic exhumation rates are similar to rates to the north, and suggest that the orogen is actually boomerang-shaped in map view. If ~1 mm/yr exhumation has been steady, the onset of rapid exhumation is constrained to post-12 Ma, but likely occurred at 5 Ma with changes in climate and plate obliquity. Although cooling ages reveal no coherent regional pattern relative to known structures, they indicate the margin accommodates a significant component of pure shear and is slip-partitioned. The resolved magnitude of convergence in the Fairweather corridor also indicates that Yakutat terrane motion is rotated from Pacific plate motion, and likely requires significant slip on the Transition fault at the southern edge of the Yakutat terrane. Although million-year exhumation rates are rapid, they are slower than short-term rates related to deglaciation. / Master of Science
|
12 |
The Impact of Long-Term Glacial Erosion on the Active Chugach-St. Elias Mountains, southern AlaskaBuscher, Jamie Todd 18 November 2003 (has links)
The influence of erosion on uplifting orogens has been demonstrated to be a primary force in landscape development. An understanding of fluvial erosion in mountain belts is fairly well documented, but the impact of glacial erosion is yet to be fully recognized. The uplift of the Chugach-St. Elias Mountains over the last 5-6 Ma under the influence of intense glaciation provides a unique setting to study the impact of glacial erosion on landscape development. The range has been built by rapid convergence (~5 cm/yr) of the Yakutat terrane with North America. Climatic forcing of northward-driven storms has created a disproportionate glacier distribution across strike, where extensive piedmont glaciers (low equilibrium line altitudes) cover the windward side of the range and small isolated glaciers (high equilibrium line altitudes) occupy the leeward side. If glacial erosion is greatest at the equilibrium line altitude, then glaciers will act as "buzzsaws" there to limit topographic development. Exhumation would therefore be expected to increase towards the coast. If glacial erosion is not dominant, exhumation would be expected to increase away from the coast towards the core of the range, where fault dip angles are high and deep crustal rocks are exposed.
To determine the impact of long-term glacial erosion on exhumation of the Chugach-St. Elias Mountains, samples were collected along and across the strike of the range and analyzed by the apatite radiogenic helium (AHE) technique. Samples previously dated using the apatite fission track (AFT) method and located adjacent to our field area were also included in the analyses. The low-temperature sensitivity of these thermochronometers allows exhumation rates to be determined for shallow crustal depths. Both glacial and tectonic processes have influenced exhumation of the range. Exhumation rates increase to the south and east towards the collision zone, but coastal rates (0.36-2.5 mm/yr) are significantly higher than inland samples (0.038-0.24 mm/yr). These rates indicate that coastal glaciation plays a dominant role in landscape development and suggest that short-term erosion rates inferred from sediment yields are exaggerated. Although the exhumation rates are lower than expected, the correlation of exhumation patterns, glacier distribution, and equilibrium line altitude supports the "glacial buzzsaw hypothesis". / Master of Science
|
13 |
Quantification of exhumation in the Cooper-Eromanga Basins, Australia / Angelos Mavromatidis.Mavromatidis, Angelos January 1997 (has links)
Bibliography: leaves 299-320. / xv, 320 leaves : ill., maps ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / The aim of this thesis is to determine the amount of exhumation in the Cooper-Eromanga Basins. The compaction method is applied in order to achieve this aim. The study expands the traditional use of the sonic log as the main 'tool' in compaction-based analysis. / Thesis (Ph.D.)--University of Adelaide, Dept. of Geology and Geophysics, 1997?
|
14 |
Exhumation et évolution du drainage himalayen depuis 15 Ma. Apport des archives sédimentaires / Exhumation and drainage evolution of the Himalaya since 15 MaChirouze, François 14 January 2011 (has links)
Les variations latérales d'exhumation de l'Himalaya sont peu documentées, notamment dans la partie est. Dans ce mémoire, l'évolution de la chaîne himalayenne est étudiée à partir de trois coupes réalisées dans le bassin d'avant-pays mio-pliocène où l'âge des sédiments a été déterminé par magnétostratigraphie. La contribution des différents domaines sources ainsi que leur exhumation ont été définies par des analyses géochimiques (εNd) et de thermochronologie détritique (apatite et zircon). Dans la partie orientale, nos observations suggèrent que les surrections concomitantes du plateau du Shillong et du prisme Indo-Birman ont repoussé le Brahmapoutre vers 7 Ma le long du front de la chaîne himalayenne. Les résultats des analyses de thermochronologie détritique soulignent une dynamique et des vitesses d'exhumation (1,7 km/Ma) semblables à celles de la partie centrale de la chaîne, en dépit de précipitations plus intenses et malgré la présence du plateau du Shillong au sud qui pourrait avoir absorbé une partie du raccourcissement tectonique. En revanche, l'installation d'une exhumation contrastée semble légèrement plus tardive que dans la partie centrale et ouest de la chaîne. Enfin, ces travaux suggèrent qu'au niveau de la syntaxe orientale il a existé un temps de latence d'au moins 3 Ma avant l'installation d'une rétroaction tectonique-érosion dans le massif du Namche Barwa liée à l'installation d'un drainage transverse à la chaîne. Au sein même de la partie centrale de la chaîne des variations latérales d'exhumation ont été mises en évidence, notamment, la mise en place au Népal occidental d'une exhumation rapide, reconnue dès 13 Ma, alors que celle-ci semble plus tardive dans la partie orientale du Népal. L'étude de la coupe occidentale a montré que le réseau de drainage du paléo-Indus est stable dans le bassin d'avant-pays depuis le Miocène moyen. En revanche, la proportion de matériaux provenant de l'Himalaya augmente à partir du Pliocène et ceci de manière généralisée le long de la partie ouest de la chaîne, suggérant un changement drastique des conditions d'exhumation de la chaîne. L'exhumation de la chaîne himalayenne apparaît donc comme étant segmentée latéralement. La mise en place d'une exhumation contrastée et diachrone le long de la chaîne ne semble donc pas liée à d'éventuels changements climatiques qui auraient affecté la chaîne de manière globale. La dynamique d'exhumation du prisme himalayen observée actuellement semble donc liée à des hétérogénéités de la croûte indienne, qui contrôlerait la mise en place des structures profondes de la chaîne. / From west to east along the Himalayan range, exhumation rates are variable and remain poorly constrained for the most part, especially in the eastern part of the mountain belt. To better understand their variability and to determine the influence of climatic and tectonic control, this thesis investigates the evolution of the range thanks to samples collected from three sections located in the eastern, central and western parts of the Mio-Pliocene Himalayan foreland basin. In these sections, sediment depositional ages were determined using magnetostratigraphy. Sediment provenance and contribution of the main litho-tectonic source-rock units were identified using geochemical analyses (Nd), while exhumation rates were determined with detrital apatite and zircon thermochronology. In the eastern part of the Himalaya, our results from the Kameng section in Arunachal Pradesh suggest that the surface uplift of both the Shillong Plateau and the Indo-Burman range have pushed the Brahmaputra River to the north, in front of the Himalayan range at about 7 Ma. Miocene-Pliocene exhumation rates inferred from detrital thermochronology are on the order of 1.7 km/Myr for the fastest exhuming areas, which is close to the rates reported for the central part of the range. Therefore, the distribution of precipitation, as well as the Shillong Plateau uplift which may have modified the convergence rate between the Indian and Eurasian plates, seem to have minor influence on the exhumation of eastern Himalaya. However, the onset of contrasting exhumation seems to have begun somewhat earlier than in the western and central parts of the range. In addition, our results highlight a 3 Myr time-lag between the installation of the Brahmaputra as a trunk river in the eastern syntaxes, and the onset of a fast exhumation there. Within the central part of the Himalaya, our work along the Muksar section in eastern Nepal documents lateral variations in exhumation rates, as western Nepal has been exhuming rapidly since 13 Ma, whereas the onset of fast exhumation seems to have occured later in eastern Nepal. Our results from the Chinji section in Pakistan, in western Himalaya, suggest that the Indus drainage network in the foreland basin has been stable since the middle Miocene. However, the Himalayan source contribution has been increasing since the Pliocene all along the western part of the range, and this suggests that a drastic change in the exhumation dynamics of the range occurred at that time. The Himalayan exhumation seems to be divided into independent segments along the range. The lateral variability in exhumation rates and timing of changes in exhumation rates do not seem to be linked to climatic change, which should produce a global response of the range. The exhumation dynamics is more likely to be linked to the tectonics structuring the wedge, possibly controlled by the crustal heterogeneity within the Indian plate.
|
15 |
Mountain building at a subduction-collision transition zone, Taiwan : insights from morphostructural analysis and thermochronological dating / Formation montagneuse à une zone de transition subduction-collision, Taïwan : vue de l'analyse morphostructurale et de la datation thermochronologiqueMesalles, Lucas 23 September 2014 (has links)
Cette étude est focalisé sur le Sud de la Chaîne Centrale de Taïwan, située à la transition entre la subduction et la collision arc-continent. La déformation du Sud de l'île est caractérisée par deux domaines distincts structuralement: une unité à vergence Ouest définie autour des plus hauts sommets, et une unité à vergence Est observée dans les vallées de l'Est. Les unités sont bordées par de grandes zones de cisaillement inclinées vers l'Ouest qui indiquent une phase d'extension tardive réactivant des décrochements senestres plus anciens. Le résultat des datations par traces de fission (TF) sur zircon le long d'un profil vertical révèlent un début de refroidissement à 7.2 Ma un taux minimum de 21°C/Ma, suivi d'une accélération de l'exhumation d'un ordre de grandeur après 3.2 Ma et d'une augmentation du gradient géothermique de ~41°C/km à 65°C/km. Les TF sur zircon et apatite détritiques des sédiments syn-orogéniques Plio-Pléistocène de l'avant-pays occidental suggèrent l'exhumation de la couverture à l'Ouest de la chaîne caractérisée par des âges similaires à ceux trouvés dans l'intérieur de la chaîne. L'analyse géomorphologique au Sud de la Chaîne Centrale révèle l'existence de zones à faible relief à hautes altitudes, à l'aplomb de la ligne de partage des eaux actuelle et cœur métamorphique. Des considérations morphologiques et climatiques indiquent une origine probablement glaciaire pour ces surfaces. La coïncidence spatiale entre les surfaces de faibles reliefs et la position du cœur métamorphique suggère le rôle potentiel des glaciations lors de l'exhumation récente du cœur de la chaîne à Taïwan, et probablement dans d'autres chaines à basses latitudes. / The present study focuses on the southern Taiwan Central Range, located at the transition between subduction and arc-continent collision. Field-work and structural analysis shows that deformation in the southern Central Range presents two major and distinct structural domains: a west-verging structural unit roughly limited to the western divide, and an east-verging unit, covering most of the eastern divide. The structural units are limited by a steeply west-dipping shear zones displaying a dominant late stage normal faulting and an early strike-slip faulting stage. Zircon fission track dating (FT) along a vertically sampled profile reveal onset of cooling at 7.2 Ma at a minimum rate of 21°C/m.y., followed by an order of magnitude acceleration of exhumation after ca. 3.2 Ma and increase of geothermal gradients from ~41°C/km to 65°C/km. Detrital zircon and apatite FT derived from Plio-Pleistocene sediments from the southwestern foreland basin display the erosion of the western divide cover rocks with ages similar to the early phase seen in the hinterland. Geomorphic analysis of the southern Central Range reveals the existence of low relief at high altitudes, located along the drainage divide and locally on top of the metamorphic core. Morphological and climatic considerations indicate the likely glacial origin of these surfaces. The spatial coincidence of the southernmost low-relief surfaces with the southernmost exposure of the metamorphic core at the main divide suggest a potential role of glaciations in the recent exhumation of the metamorphic core in Taiwan, and probably in other low-latitude orogens.
|
16 |
Thermochronology of Early Jurassic Exhumation of the Yukon-Tanana Terrane, West-central YukonKnight, Eleanor 28 June 2012 (has links)
This study utilised U-Pb geochronology, and 40Ar/39Ar and (U-Th)/He thermochro-nology to delineate arc magmatism, metamorphism, and exhumation of the pericratonic Yukon-Tanana terrane in the McQuesten map area of west-central Yukon, Canada. SHRIMP U-Pb ages delineate Mid to Late Paleozoic arc magmatism and fit key units into the regional lithotectonic framework of the terrane. The juxtaposition of unmetamorphosed and predomi-nantly undeformed Devono-Mississippian rocks in the northwest of the study area with polydeformed and up to amphibolite facies metamorphosed rocks in the southwest suggests a crustal-scale discontinuity, the Willow Lake fault, bounds the two domains. The asymmetric distribution of 40Ar/39Ar ages across the fault suggest it is extensional, and was active in the Early Jurassic. Zircon (U-Th)/He ages delineate erosion of rocks in the northwest through the upper crust during the Late Triassic and Late Jurassic to Early Cretaceous followed by Mid-dle Cretaceous erosion of the southwestern domain and possibly fault reactivation.
|
17 |
Thermochronology of Early Jurassic Exhumation of the Yukon-Tanana Terrane, West-central YukonKnight, Eleanor 28 June 2012 (has links)
This study utilised U-Pb geochronology, and 40Ar/39Ar and (U-Th)/He thermochro-nology to delineate arc magmatism, metamorphism, and exhumation of the pericratonic Yukon-Tanana terrane in the McQuesten map area of west-central Yukon, Canada. SHRIMP U-Pb ages delineate Mid to Late Paleozoic arc magmatism and fit key units into the regional lithotectonic framework of the terrane. The juxtaposition of unmetamorphosed and predomi-nantly undeformed Devono-Mississippian rocks in the northwest of the study area with polydeformed and up to amphibolite facies metamorphosed rocks in the southwest suggests a crustal-scale discontinuity, the Willow Lake fault, bounds the two domains. The asymmetric distribution of 40Ar/39Ar ages across the fault suggest it is extensional, and was active in the Early Jurassic. Zircon (U-Th)/He ages delineate erosion of rocks in the northwest through the upper crust during the Late Triassic and Late Jurassic to Early Cretaceous followed by Mid-dle Cretaceous erosion of the southwestern domain and possibly fault reactivation.
|
18 |
Foreland basin evolution and exhumation along the deformation front of the Eastern Cordillera, northern Andes, ColombiaBande, Alejandro Ezequiel 23 December 2010 (has links)
Tracking the phases of Cenozoic deformation in the Eastern Cordillera of Colombia has proven to be a challenging task. Clear disagreements remain in interpretations of the timing of uplift of the Eastern Cordillera, possibly based on difficulties in distinguishing first-cycle Central Cordillera grains from recycled Eastern Cordillera clasts. This thesis focuses on the Eocene-Pliocene sedimentary record of the eastern foothills of the Eastern Cordillera at a latitude of 6°N, integrating basin analysis with several provenance techniques in order to date the activation of several thrust systems. Based on assessments of depositional environments and sediment dispersal patterns together with mineralogical and geochronological provenance, the onset of uplift in the axial zone of the Eastern Cordillera is constrained to be Oligocene. Prior to uplift, deposition in the eastern foothills was sourced from the eastern craton. Following the Oligocene episode, a continuous eastward advance of deformation is documented. An early Miocene episode probably reactivated the easternmost Cretaceous rift boundary along the eastern side of the Eastern Cordillera. Subsequent footwall shortcuts of those faults initiated activity in the middle to late Miocene, creating an intermontane (piggyback) basin in the eastern foothills at that time. In the preferred interpretation, this in-sequence history of thrust activation represents the main phases of deformation in the Eastern Cordillera from Eocene to Pliocene time, with neotectonic activity recording continued shortening. / text
|
19 |
Tectonics of the Western Betics : from mantle extensional exhumation to westward thrusting / Tectonique de l'Ouest des Bétiques : de l'exhumation du manteau en contexte extensif au chevauchement vers l'ouestFrasca, Gianluca 15 July 2015 (has links)
De nouvelles données structurales dans l'ouest de la Cordillère Bétique (Espagne) ont permis d'identifier deux couloirs décrochants, qui ont accommodés le mouvement progressif vers l'ouest du domaine Alboran, et les modes de déformations dans la croûte et le manteau (péridotites de Ronda) durant une phase d'amincissement lithosphérique intense. De nouvelles données géochronologiques précisent l'âge des stades de l'évolution tectonique de l'arc de Gibraltar : 'exhumation du manteau avant 22.5 Ma et le chevauchement vers l'ouest à partir de 20 Ma / The thesis focuses on the Western Betics, which is characterized by two major thrusts: 1/ the Internal/External Zone Boundary limits the internal metamorphic domain (Alboran Domain) from the fold-and-thrust belts inthe External Zone, and 2/ the Ronda Peridotites Thrust allows the juxtaposition of a hyperstretched lithosphere with large bodies of sub-continental mantle rocks on top of upper crustal rocks. First part: New structural data are presented and used to argue for two Lower Miocene E-W-trending strike-slip corridors played a major role in the deformation pattern of the Alboran Domain, in which E-W dextral strike-slip faults, N60°-trending thrusts and N140°-trending normal faults developed simultaneously during dextral strike-slip simple shear. The inferred continuous westward translation of the Alboran Domain is accommodated by a major E-W-trending lateral ramp (strike-slip) and a N60°-trending frontal thrust. At lithosphere-scale, we interpret the observed deformation pattern as the upper-plate expression of a lateral slab tear and of its westward propagation since Lower Miocene. The crustal emplacement of the Ronda Peridotites occurred at the onset of this westward motion. Second part: New structural data together with Ar-Ar ages serve to document the changes in deformation processes that accommodate the progressive necking of a continental lithosphere. We identify three main successive steps. First, a mid-crustal shear zone and a crust-mantle shear zone accommodate ductile crust thinning and ascent of the sub-continental mantle. The shear zones act synchronously but with opposite senses of shear, top-to-W and top-to-E respectively in the crust-mantle extensional shear zone, and at the brittle-ductiletransition in the crust. Second, hyper-stretching localizes in the neck, leading to an almost disappearance of the ductile crust and to crustal stretching values larger than 2000%, and bringing the upper crust into contact with the subcontinental mantle, each of them with theiralready acquired opposite senses of shear. Finally, high-angle normal faulting, dated by 40Ar-39Ar step-heating method on muscovite at ca. 21 Ma, cut through the Moho, where the ductile crust almost disappear and related block tilting ends the full exhumation of mantle in the zone of localized stretching. Third part: New geochronological data precisely constrain the transition from rifting to thrusting. Using U-Pb LA-ICP-MS dating, we identify two distinct episodes of crustal melting associated with two large-scale tectonic contacts that bound the Ronda Peridotites. The first episode of partial melting within the HT foliation at ca. 22.5 Ma is related to the extreme thinning of the continental crust and to mantle exhumation. The second episode of crustal melting at ca. 20 Ma, marked by leucocratic granite dikes, is related to the thrust emplacement of the section of thinned and hot continental lithosphere on top of crustal rocks.
|
20 |
Thermochronology of Early Jurassic Exhumation of the Yukon-Tanana Terrane, West-central YukonKnight, Eleanor January 2012 (has links)
This study utilised U-Pb geochronology, and 40Ar/39Ar and (U-Th)/He thermochro-nology to delineate arc magmatism, metamorphism, and exhumation of the pericratonic Yukon-Tanana terrane in the McQuesten map area of west-central Yukon, Canada. SHRIMP U-Pb ages delineate Mid to Late Paleozoic arc magmatism and fit key units into the regional lithotectonic framework of the terrane. The juxtaposition of unmetamorphosed and predomi-nantly undeformed Devono-Mississippian rocks in the northwest of the study area with polydeformed and up to amphibolite facies metamorphosed rocks in the southwest suggests a crustal-scale discontinuity, the Willow Lake fault, bounds the two domains. The asymmetric distribution of 40Ar/39Ar ages across the fault suggest it is extensional, and was active in the Early Jurassic. Zircon (U-Th)/He ages delineate erosion of rocks in the northwest through the upper crust during the Late Triassic and Late Jurassic to Early Cretaceous followed by Mid-dle Cretaceous erosion of the southwestern domain and possibly fault reactivation.
|
Page generated in 0.0805 seconds