• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 5
  • 2
  • 1
  • Tagged with
  • 20
  • 20
  • 11
  • 9
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Forced two layer beta-plane quasi-geostrophic flow

Onica, Constantin 12 April 2006 (has links)
We consider a model of quasigeostrophic turbulence that has proven useful in theoretical studies of large scale heat transport and coherent structure formation in planetary atmospheres and oceans. The model consists of a coupled pair of hyperbolic PDE’s with a forcing which represents domain-scale thermal energy source. Although the use to which the model is typically put involves gathering information from very long numerical integrations, little of a rigorous nature is known about long-time properties of solutions to the equations. In the first part of my dissertation we define a notion of weak solution, and show using Galerkin methods the long-time existence and uniqueness of such solutions. In the second part we prove that the unique weak solution found in the first part produces, via the inverse Fourier transform, a classical solution for the system. Moreover, we prove that this solution is analytic in space and positive time.
2

Theories on Auctions with Participation Costs

Cao, Xiaoyong 14 January 2010 (has links)
In this dissertation I study theories on auctions with participation costs with various information structure. Chapter II studies equilibria of second price auctions with differentiated participation costs. We consider equilibria in independent private values environments where bidders? entry costs are common knowledge while valuations are private information. We identify two types of equilibria: monotonic equilibria in which a higher participation cost results in a higher cutoff point for submitting a bid, and neg-monotonic equilibria in which a higher participation cost results in a lower cutoff point. We show that there always exists a monotonic equilibrium, and further, that the equilibrium is unique for concave distribution functions and strictly convex distribution functions with some additional conditions. There exists a neg-monotonic equilibrium when the distribution function is strictly convex and the difference of the participation costs is sufficiently small. We also provide comparative static analysis and study the limit status of equilibria when the difference in bidders' participation costs approaches zero. Chapter III studies equilibria of second price auctions when values and participation costs are both privation information and are drawn from general distribution functions. We consider the existence and uniqueness of equilibrium. It is shown that there always exists an equilibrium for this general economy, and further there exists a unique symmetric equilibrium when all bidders are ex ante homogenous. Moreover, we identify a sufficient condition under which we have a unique equilibrium in a heterogeneous economy with two bidders. Our general framework covers many relevant models in the literature as special cases. Chapter IV characterizes equilibria of first price auctions with participation costs in the independent private values environment. We focus on the cutoff strategies in which each bidder participates and submits a bid if his value is greater than or equal to a critical value. It is shown that, when bidders are homogenous, there always exists a unique symmetric equilibrium, and further, there is no other equilibrium when valuation distribution functions are concave. However, when distribution functions are elastic at the symmetric equilibrium, there exists an asymmetric equilibrium. We find similar results when bidders are heterogenous.
3

Inverse Problems for Fractional Diffusion Equations

Zuo, Lihua 16 December 2013 (has links)
In recent decades, significant interest, based on physics and engineering applications, has developed on so-called anomalous diffusion processes that possess different spread functions with classical ones. The resulting differential equation whose fundamental solution matches this decay process is best modeled by an equation containing a fractional order derivative. This dissertation mainly focuses on some inverse problems for fractional diffusion equations. After some background introductions and preliminaries in Section 1 and 2, in the third section we consider our first inverse boundary problem. This is where an unknown boundary condition is to be determined from overposed data in a time- fractional diffusion equation. Based upon the fundamental solution in free space, we derive a representation for the unknown parameters as the solution of a nonlinear Volterra integral equation of second kind with a weakly singular kernel. We are able to make physically reasonable assumptions on our constraining functions (initial and given boundary values) to be able to prove a uniqueness and reconstruction result. This is achieved by an iterative process and is an immediate result of applying a certain fixed point theorem. Numerical examples are presented to illustrate the validity and effectiveness of the proposed method. In the fourth section a reaction-diffusion problem with an unknown nonlinear source function, which has to be determined from overposed data, is considered. A uniqueness result is proved and a numerical algorithm including convergence analysis under some physically reasonable assumptions is presented in the one-dimensional case. To show effectiveness of the proposed method, some results of numerical simulations are presented. In Section 5, we also attempted to reconstruct a nonlinear source in a heat equation from a number of known input sources. This represents a new research even for the case of classical diffusion and would be the first step in a solution method for the fractional diffusion case. While analytic work is still in progress on this problem, Newton and Quasi-Newton method are applied to show the feasibility of numerical reconstructions. In conclusion, the fractional diffusion equations have some different properties with the classical ones but there are some similarities between them. The classical tools like integral equations and fixed point theory still hold under slightly different assumptions. Inverse problems for fractional diffusion equations have applications in many engineering and physics areas such as material design, porous media. They are trickier than classical ones but there are also some advantages due to the mildly ill-conditioned singularity caused by the new kernel functions.
4

Initial Value Problems for Creeping Flow of Maxwell Fluids

Laadj, Toufik 10 March 2011 (has links)
We consider the flow of nonlinear Maxwell fluids in the unsteady quasistatic case, where the effect of inertia is neglected. We study the well-posedness of the resulting PDE initial-boundary value problem. This well-posedness depends on the unique solvability of an elliptic boundary value problem. We first present results for the 3D case, locally and globally in time, with sufficiently small initial data, and for a simple shear flow problem, locally in time with arbitrary initial data; after that we extend our results to some 3D flow problems, locally in time, with large initial data. Additionally, we present results for models of White-Metzner type in 3D flow, locally and globally in time, with sufficiently small initial data. We solve our problem using an iteration between elliptic and hyperbolic linear subproblems. The limit of the iteration provides the solution of our original problem. / Ph. D.
5

Estudo sobre existência de soluções e oscilação para equações diferenciais funcionais com retardamento /

Souza, Kleber de Santana January 2019 (has links)
Orientador: Marta Cilene Gadotti / Resumo: Este trabalho tem por objetivo o estudo da teoria básica sobre as Equações Diferenciais Funcionais com Retardamento. Enunciaremos e provaremos os resultados clássicos sobre existência e unicidade de solução. E iremos estudar a existência de soluções oscilatórias para equações autônomas escalares. / Abstract: This paper aims to study the basic theory about the Delay Differential Equations. We will enunciate and prove the classic results on existence and uniqueness of solution. And we will study the existence of oscillatory solutions for scalar autonomous equations. / Mestre
6

Optimal Shape Design for Polymer Electrolyte Membrane Fuel Cell Cathode Air Channel: Modelling, Computational and Mathematical Analysis

Al-Smail, Jamal Hussain 19 March 2012 (has links)
Hydrogen fuel cells are devices used to generate electricity from the electrochemical reaction between air and hydrogen gas. An attractive advantage of these devices is that their byproduct is water, which is very safe to the environment. However, hydrogen fuel cells still lack some improvements in terms of increasing their life time and electricity production, decreasing power losses, and optimizing their operating conditions. In this thesis, the cathode part of the hydrogen fuel cell will be considered. This part mainly consists of an air gas channel and a gas diffusion layer. To simulate the fluid dynamics taking place in the cathode, we present two models, a general model and a simple model both based on a set of conservation laws governing the fluid dynamics and chemical reactions. A numerical method to solve these models is presented and verified in terms of accuracy. We also show that both models give similar results and validate the simple model by recovering a polarization curve obtained experimentally. Next, a shape optimization problem is introduced to find an optimal design of the air gas channel. This problem is defined from the simple model and a cost functional, $E$, that measures efficiency factors. The objective of this functional is to maximize the electricity production, uniformize the reaction rate in the catalytic layer and minimize the pressure drop in the gas channel. The impact of the gas channel shape optimization is investigated with a series of test cases in long and short fuel cell geometries. In most instances, the optimal design improves efficiency in on- and off-design operating conditions by shifting the polarization curve vertically and to the right. The second primary goal of the thesis is to analyze mathematical issues related to the introduced shape optimization problem. This involves existence and uniqueness of the solution for the presented model and differentiability of the state variables with respect to the domain of the air channel. The optimization problem is solved using the gradient method, and hence the gradient of $E$ must be found. The gradient of $E$ is obtained by introducing an adjoint system of equations, which is coupled with the state problem, namely the simple model of the fuel cell. The existence and uniqueness of the solution for the adjoint system is shown, and the shape differentiability of the cost functional $E$ is proved.
7

Optimal Shape Design for Polymer Electrolyte Membrane Fuel Cell Cathode Air Channel: Modelling, Computational and Mathematical Analysis

Al-Smail, Jamal Hussain 19 March 2012 (has links)
Hydrogen fuel cells are devices used to generate electricity from the electrochemical reaction between air and hydrogen gas. An attractive advantage of these devices is that their byproduct is water, which is very safe to the environment. However, hydrogen fuel cells still lack some improvements in terms of increasing their life time and electricity production, decreasing power losses, and optimizing their operating conditions. In this thesis, the cathode part of the hydrogen fuel cell will be considered. This part mainly consists of an air gas channel and a gas diffusion layer. To simulate the fluid dynamics taking place in the cathode, we present two models, a general model and a simple model both based on a set of conservation laws governing the fluid dynamics and chemical reactions. A numerical method to solve these models is presented and verified in terms of accuracy. We also show that both models give similar results and validate the simple model by recovering a polarization curve obtained experimentally. Next, a shape optimization problem is introduced to find an optimal design of the air gas channel. This problem is defined from the simple model and a cost functional, $E$, that measures efficiency factors. The objective of this functional is to maximize the electricity production, uniformize the reaction rate in the catalytic layer and minimize the pressure drop in the gas channel. The impact of the gas channel shape optimization is investigated with a series of test cases in long and short fuel cell geometries. In most instances, the optimal design improves efficiency in on- and off-design operating conditions by shifting the polarization curve vertically and to the right. The second primary goal of the thesis is to analyze mathematical issues related to the introduced shape optimization problem. This involves existence and uniqueness of the solution for the presented model and differentiability of the state variables with respect to the domain of the air channel. The optimization problem is solved using the gradient method, and hence the gradient of $E$ must be found. The gradient of $E$ is obtained by introducing an adjoint system of equations, which is coupled with the state problem, namely the simple model of the fuel cell. The existence and uniqueness of the solution for the adjoint system is shown, and the shape differentiability of the cost functional $E$ is proved.
8

Optimal Shape Design for Polymer Electrolyte Membrane Fuel Cell Cathode Air Channel: Modelling, Computational and Mathematical Analysis

Al-Smail, Jamal Hussain 19 March 2012 (has links)
Hydrogen fuel cells are devices used to generate electricity from the electrochemical reaction between air and hydrogen gas. An attractive advantage of these devices is that their byproduct is water, which is very safe to the environment. However, hydrogen fuel cells still lack some improvements in terms of increasing their life time and electricity production, decreasing power losses, and optimizing their operating conditions. In this thesis, the cathode part of the hydrogen fuel cell will be considered. This part mainly consists of an air gas channel and a gas diffusion layer. To simulate the fluid dynamics taking place in the cathode, we present two models, a general model and a simple model both based on a set of conservation laws governing the fluid dynamics and chemical reactions. A numerical method to solve these models is presented and verified in terms of accuracy. We also show that both models give similar results and validate the simple model by recovering a polarization curve obtained experimentally. Next, a shape optimization problem is introduced to find an optimal design of the air gas channel. This problem is defined from the simple model and a cost functional, $E$, that measures efficiency factors. The objective of this functional is to maximize the electricity production, uniformize the reaction rate in the catalytic layer and minimize the pressure drop in the gas channel. The impact of the gas channel shape optimization is investigated with a series of test cases in long and short fuel cell geometries. In most instances, the optimal design improves efficiency in on- and off-design operating conditions by shifting the polarization curve vertically and to the right. The second primary goal of the thesis is to analyze mathematical issues related to the introduced shape optimization problem. This involves existence and uniqueness of the solution for the presented model and differentiability of the state variables with respect to the domain of the air channel. The optimization problem is solved using the gradient method, and hence the gradient of $E$ must be found. The gradient of $E$ is obtained by introducing an adjoint system of equations, which is coupled with the state problem, namely the simple model of the fuel cell. The existence and uniqueness of the solution for the adjoint system is shown, and the shape differentiability of the cost functional $E$ is proved.
9

Optimal Shape Design for Polymer Electrolyte Membrane Fuel Cell Cathode Air Channel: Modelling, Computational and Mathematical Analysis

Al-Smail, Jamal Hussain January 2012 (has links)
Hydrogen fuel cells are devices used to generate electricity from the electrochemical reaction between air and hydrogen gas. An attractive advantage of these devices is that their byproduct is water, which is very safe to the environment. However, hydrogen fuel cells still lack some improvements in terms of increasing their life time and electricity production, decreasing power losses, and optimizing their operating conditions. In this thesis, the cathode part of the hydrogen fuel cell will be considered. This part mainly consists of an air gas channel and a gas diffusion layer. To simulate the fluid dynamics taking place in the cathode, we present two models, a general model and a simple model both based on a set of conservation laws governing the fluid dynamics and chemical reactions. A numerical method to solve these models is presented and verified in terms of accuracy. We also show that both models give similar results and validate the simple model by recovering a polarization curve obtained experimentally. Next, a shape optimization problem is introduced to find an optimal design of the air gas channel. This problem is defined from the simple model and a cost functional, $E$, that measures efficiency factors. The objective of this functional is to maximize the electricity production, uniformize the reaction rate in the catalytic layer and minimize the pressure drop in the gas channel. The impact of the gas channel shape optimization is investigated with a series of test cases in long and short fuel cell geometries. In most instances, the optimal design improves efficiency in on- and off-design operating conditions by shifting the polarization curve vertically and to the right. The second primary goal of the thesis is to analyze mathematical issues related to the introduced shape optimization problem. This involves existence and uniqueness of the solution for the presented model and differentiability of the state variables with respect to the domain of the air channel. The optimization problem is solved using the gradient method, and hence the gradient of $E$ must be found. The gradient of $E$ is obtained by introducing an adjoint system of equations, which is coupled with the state problem, namely the simple model of the fuel cell. The existence and uniqueness of the solution for the adjoint system is shown, and the shape differentiability of the cost functional $E$ is proved.
10

Theory and Application of a Class of Abstract Differential-Algebraic Equations

Pierson, Mark A. 29 April 2005 (has links)
We first provide a detailed background of a geometric projection methodology developed by Professor Roswitha Marz at Humboldt University in Berlin for showing uniqueness and existence of solutions for ordinary differential-algebraic equations (DAEs). Because of the geometric and operator-theoretic aspects of this particular method, it can be extended to the case of infinite-dimensional abstract DAEs. For example, partial differential equations (PDEs) are often formulated as abstract Cauchy or evolution problems which we label abstract ordinary differential equations or AODE. Using this abstract formulation, existence and uniqueness of the Cauchy problem has been studied. Similarly, we look at an AODE system with operator constraint equations to formulate an abstract differential-algebraic equation or ADAE problem. Existence and uniqueness of solutions is shown under certain conditions on the operators for both index-1 and index-2 abstract DAEs. These existence and uniqueness results are then applied to some index-1 DAEs in the area of thermodynamic modeling of a chemical vapor deposition reactor and to a structural dynamics problem. The application for the structural dynamics problem, in particular, provides a detailed construction of the model and development of the DAE framework. Existence and uniqueness are primarily demonstrated using a semigroup approach. Finally, an exploration of some issues which arise from discretizing the abstract DAE are discussed. / Ph. D.

Page generated in 0.1119 seconds