• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Explicit Solutions for One-Dimensional Mean-Field Games

Prazeres, Mariana 05 April 2017 (has links)
In this thesis, we consider stationary one-dimensional mean-field games (MFGs) with or without congestion. Our aim is to understand the qualitative features of these games through the analysis of explicit solutions. We are particularly interested in MFGs with a nonmonotonic behavior, which corresponds to situations where agents tend to aggregate. First, we derive the MFG equations from control theory. Then, we compute explicit solutions using the current formulation and examine their behavior. Finally, we represent the solutions and analyze the results. This thesis main contributions are the following: First, we develop the current method to solve MFG explicitly. Second, we analyze in detail non-monotonic MFGs and discover new phenomena: non-uniqueness, discontinuous solutions, empty regions and unhappiness traps. Finally, we address several regularization procedures and examine the stability of MFGs.
2

The role of explicit solutions in the analysis of epidemic models

Hatem, Kosay January 2022 (has links)
In this thesis, we will study basic mathematical epidemic models SIR, SIS, and SEIR. Then we will construct a modified model as a combination of SIR and SIS models. First, we will find the explicit solutions for the SIS model. and show no exact solution for the SIR model. Also, find the parametric solution for the SIR model and find a numerical solution by using Euler’s method. Then we find an approximate explicit form of the epidemic curve. Also, we will study parametric influences on the SIR and SIS models. Finally, we will suggest some recommendations to decrease the epidemic’s spread.

Page generated in 0.0974 seconds