1 |
APLICAÇÃO DE MÉTODOS ESTATÍSTICOS EXPLORATÓRIOS, PCA E HCA, PARA ANÁLISE DE DADOS EM UMA INDÚSTRIA DE SANEANTES DO ESTADO DE GOIÁSGranja, Isis Juliane Arantes 12 March 2018 (has links)
Submitted by admin tede (tede@pucgoias.edu.br) on 2018-04-18T12:08:35Z
No. of bitstreams: 1
ISIS JULIANE ARANTES GRANJA.pdf: 1309143 bytes, checksum: 3c564f96f6c30173df19ea1c01f8fe4b (MD5) / Made available in DSpace on 2018-04-18T12:08:35Z (GMT). No. of bitstreams: 1
ISIS JULIANE ARANTES GRANJA.pdf: 1309143 bytes, checksum: 3c564f96f6c30173df19ea1c01f8fe4b (MD5)
Previous issue date: 2018-03-12 / This research aimed to analyze the application of exploratory statistical methods, in particular
the PCA and HCA methods, in the analysis of data related to the production management in a
chemical industry of household sanitation. The chemical industries of cleaning products, also
known as sanitizing industries, shows a great market growth and consequently
competitiveness, thus forcing the improvement in their productive performance. The software
used in this analysis was the digital (commercial and managing system) and the
"STATÍSTICA", version 7.0 (system of statistical calculations). The data are related is the
3A Química e Farmacêutica Ltda, located in the city of Caturaí, state of Goiás. Twelve
months of the year 2016. The following variables were established: quantities produced and
effectively sold of sanitizers in plastic gallons of 20 liters, 25 liters, 50 liters, 200 liters, 240
liters, gallons of can Iron) of 200 liters, boxes with 04 gallons of 05 liters; numbers of
employees involved; cost with electric energy and global gross billing. The results obtained
were analyzed through graphs and statistical tables, which represent three large groups of
samples and effectively pointed to July as the most productive month of the year. It has also
been shown that the rainy months are effectively the months of lower performance, which
indicates a new strategy to be developed for improving this period and also considering that
the production of boxes with 02 gallons of 5 liters and plastic gallons with 25 liters should be
implemented to make the results even better. In this way, a methodology for the
implementation of new packaging was consolidated in obtaining the improvement of
productivity and performance in an industry of sanitation sector in the State of Goiás. / Esta pesquisa visou analisar a aplicação de métodos estatísticos exploratórios, em especial os
métodos PCA e HCA, na análise de dados relativos à gestão de produção numa indústria
química de saneantes domissanitários. As indústrias químicas de produtos de limpeza,
também conhecidas como indústrias de saneantes, encontram-se em um grande crescimento
de mercado e, consequentemente, competitividade, obrigando, assim, a melhoria em seu
desempenho produtivo. A empresa analisada foi 3A Química e Farmacêutica Ltda, localizada
no município de Caturaí, estado de Goiás. Os softwares utilizados nessa análise foram o da
digital (sistema comercial e gerencial), pacote "R" e o “STATÍSTICA”, versão 7.0 (sistema
de cálculos estatísticos). Os dados coletados referem-se ao período de doze meses do ano de
2016. Como variáveis estabeleceram-se as seguintes: quantidades produzidas e efetivamente
vendidas de saneantes em galões plásticos de 20 litros, 25 litros, 50 litros, 200 litros, 240
litros, galões de lata (ferro) de 200 litros, caixas com 04 galões de 05 litros; números de
funcionários envolvidos; custo com energia elétrica e faturamento bruto global. Os resultados
obtidos foram analisados por meio de gráficos e tabelas estatísticas, resultados que
configuram três grandes grupos de amostras e efetivamente apontaram para o mês de julho
como sendo o mês mais produtivo do ano. Também se mostrou que os meses chuvosos são,
efetivamente, os meses de menor desempenho, o que indica necessidade de elaborar uma nova
estratégia para que esse quadro se modifique, sabendo, inclusive, que a produção de caixas
com 02 galões de 5 litros e galões plásticos com 25 litros deverão ser implementadas para que
os resultados sejam ainda melhores. Dessa forma se consolidou uma metodologia de
implantação de novas embalagens na obtenção da melhoria da lucratividade e desempenho em
uma indústria do setor de saneantes do Estado de Goiás.
|
2 |
Visualisierung und Analyse multivariater Daten in der gartenbaulichen Beratung -Methodik, Einsatz und Vergleich datenanalytischer VerfahrenKrusche, Stefan 16 December 1999 (has links)
Ausgangspunkt der vorliegenden Arbeit ist die Suche der gartenbaulichen Beratung nach Visualisierungsmöglichkeiten umfangreicher gartenbaulicher Datensätze, die einerseits zu einer graphischen Zusammenfassung der in den Daten enthaltenen Informationen dienen und die andererseits auf interaktivem Weg Möglichkeiten der graphischen Analyse von Erhebungsdaten liefern. Die weitgehende Freiheit von Modellannahmen, der überwiegend deskriptive Charakter der Untersuchungen, das interaktive, schrittweise Vorgehen in der Auswertung, und die Betonung graphischer Elemente kennzeichnet die Arbeit als Beitrag zur explorativen Datenanalyse. Das ausgewählte Methodenspektrum, das ausführlich besprochen wird, schließt Verfahren der Dimensionserniedrigung (Hauptkomponentenanalyse, Korrespondenzanalyse und mehrdimensionale Skalierung) und darauf aufbauende Biplots, die Analyse gruppierter Daten (Prokrustes-Rotation und Gruppenanalysemodelle in der Hauptkomponentenanalyse), Linienverbände (Liniendiagramme der formalen Begriffsanalyse, Baumdiagramme und graphische Modelle), sowie ergänzende graphische Verfahren, wie zum Beispiel Trellis-Displays, ein. Beispielhaft werden eine betriebsbegleitende Untersuchung mit Cyclamen aus der Beratungspraxis der Landwirtschaftskammer Westfalen-Lippe und die Kennzahlen der Jahre 1992 bis 1994 der Topfpflanzenbetriebe des Arbeitskreises für Betriebswirtschaft im Gartenbau aus Hannover analysiert. Neben einer Vielzahl informativer Einzelergebnisse, zeigt die Arbeit auch auf, daß die qualitativ relativ schlechten Datengrundlagen nur selten eindeutige Schlußfolgerungen zulassen. Sie sensibilisiert also in diesem Bereich für die Problematik, die der explorativen Analyse wenig perfekter Daten innewohnt. Als besonders sinnvolle Hilfsmittel in der graphischen Analyse erweisen sich Biplots, hierarchische Liniendiagramme und Trellis-Displays. Die Segmentierung einer Vielzahl von Objekten in einzelne Gruppen wird durch Klassifikations- und Regressionsbäume vor allem unter dem Gesichtspunkt der Visualisierung gut gelöst, da den entstehenden Baumstrukturen auch die die Segmente bestimmenden Variablen visuell entnommen werden können. Diskrete graphische Modelle bieten schließlich einen guten Ansatzpunkt zur Analyse von multivariaten Beziehungszusammenhängen. Einzelne, nicht in der statistischen Standardsoftware vorhandene Prozeduren sind in eigens erstellten Programmcodes zusammengefaßt und können mit dem Programm Genstat genutzt werden. / In order to interpret large data sets in the context of consultancy and extension in horticulture, this thesis attempts to find ways to visually explore horticultural multivariate data, in order to obtain a concise description and summary of the information available in the data and moreover develop possibilities to interactively analyse survey data. The thesis is part of an exploratory data analysis which analyses data without making specific model assumptions, is predominantly descriptive, analyses data step by step in a highly interactive setting, and makes full use of all kinds of graphical displays. The methods used comprise various dimensionality reduction techniques (principal components analysis, correspondence analysis, multidimensional scaling), biplots, the multivariate analysis of grouped data (procrustes rotation and groupwise principal components), graphical models, CART, and line diagrams of formal concept analysis. In addition, further graphical methods are used, like e.g. trellis displays. Data from an on-site investigation of the production process of Cyclamen in 20 nurseries and from the microeconomics indicators of 297 growers in Germany (so called Kennzahlen) from the years 1992 to 1994 are used to demonstrate the analytical capabilities of the methods used. The data present a perfect example of unperfect data, and therefore represent the majority of the data sets that horticultural consultancy has to work with. Thus, it becomes clear, that despite the variety of results, which helps to enhance the understanding of the data at hand, not only the complexity of the processes observed, but also the low data quality make it fairly difficult to arrive at clear cut conclusions. The most helpful tools in the graphical data analysis are biplots, hierarchical line diagrams and trellis displays. Finding an empirical grouping of objects is best solved by classification and regression trees, which provide both, the data segmentation, and an intuitively appealing visualisation and explanation of the derived groups. In order to understand multivariate relationships better, discrete graphical models are well suited. The procedures to carry out a number of the methods which cannot be found in general statistics packages are provided in the form of Genstat codes.
|
Page generated in 0.0955 seconds